在 xts 上使用 rowSums 时保留 xts 索引

Preserve xts index when using rowSums on xts

有没有办法在传递 rowSums 一个 xts 对象时保留 xts 对象的索引?

目前我将结果重铸为一个 xts 对象,但是这似乎没有 rowSums 能够简单地 return 那样快通过了

xts(rowSums(abs(data)),index(data))

如果您的异议是必须将输入的组件分开并放在一起,那么如果 x 是您的 xts 对象,那么试试这个。它returns直接是一个xts对象:

Reduce("+", as.list(x))

有趣的问题。让我们忽略 abs 计算,因为它在很多时候只与价格无关。如果您关心的是性能,这里是当前建议的一组时间安排:

library(microbenchmark)
sample.xts <- xts(order.by = as.POSIXct("2004-01-01 00:00:00") + 1:1e6, matrix(rnorm(1e6 *4), ncol = 4), dimnames = list(NULL, c("A", "B", "C", "D")))

# See how quickly rowSum works on just the underlying matrix of data in the timings below:
xx <- coredata(sample.xts)

microbenchmark(
    coredata(sample.xts),
    rowSums(xx),
    rowSums(sample.xts),
    rowSums(coredata(sample.xts)),
.xts(x = rowSums(sample.xts), .index(sample.xts)),
xts(rowSums(coredata(sample.xts)), index(sample.xts)),
xts(rowSums(sample.xts),index(sample.xts)), 
Reduce("+", as.list(sample.xts)), times = 100)

# Unit: milliseconds
#                                                  expr       min        lq      mean    median        uq       max neval
#                                  coredata(sample.xts)  2.558479  2.661242  6.884048  2.817607  6.356423 104.57993   100
#                                           rowSums(xx) 10.314719 10.824184 11.872108 11.289788 12.382614  18.39334   100
#                                   rowSums(sample.xts) 10.358009 10.887609 11.814267 11.335977 12.387085  17.16193   100
#                         rowSums(coredata(sample.xts)) 12.916714 13.839761 18.968731 15.950048 17.836838 113.78552   100
#     .xts(x = rowSums(sample.xts), .index(sample.xts)) 14.402382 15.764736 20.307027 17.808984 19.072600 114.24039   100
# xts(rowSums(coredata(sample.xts)), index(sample.xts)) 20.490542 24.183286 34.251031 25.566188 27.900599 125.93967   100
#           xts(rowSums(sample.xts), index(sample.xts)) 17.436137 19.087269 25.259143 21.923877 22.805013 119.60638   100
#                      Reduce("+", as.list(sample.xts)) 21.745574 26.075326 41.696152 27.669601 30.442397 136.38650   100

y = .xts(x = rowSums(sample.xts), .index(sample.xts))
y2 = xts(rowSums(sample.xts),index(sample.xts))
all.equal(y, y2)
#[1] TRUE

coredata(sample.xts) returns 底层数字矩阵。我认为您可以期望的最快性能是由 rowSums(xx) 给出的计算,可以认为是 "benchmark"。那么问题是,在 xts 对象中最快的方法是什么。它似乎 .xts(x = rowSums(sample.xts), .index(sample.xts)) 表现不错。