Concat python 基于唯一行的数据帧

Concat python dataframes based on unique rows

我的数据框如下所示:

df1

user_id    username firstname lastname 
 123         abc      abc       abc
 456         def      def       def 
 789         ghi      ghi       ghi

df2

user_id     username  firstname lastname
 111         xyz       xyz       xyz
 456         def       def       def
 234         mnp       mnp        mnp

现在我想要一个像

这样的输出数据框
 user_id    username firstname lastname 
 123         abc      abc       abc
 456         def      def       def 
 789         ghi      ghi       ghi
 111         xyz       xyz       xyz
 234         mnp       mnp        mnp

As user_id 456 在两个数据帧中都很常见。我已经在 user_id groupby(['user_id']) 上尝试过 groupby 。但看起来 groupby 后面需要跟一些 aggregation ,我不想在这里。

使用concat + drop_duplicates:

df = pd.concat([df1, df2]).drop_duplicates('user_id').reset_index(drop=True)
print (df)
   user_id username firstname lastname
0      123      abc       abc      abc
1      456      def       def      def
2      789      ghi       ghi      ghi
3      111      xyz       xyz      xyz
4      234      mnp       mnp      mnp

groupby 和聚合 first 的解决方案较慢:

df = pd.concat([df1, df2]).groupby('user_id', as_index=False, sort=False).first()
print (df)
   user_id username firstname lastname
0      123      abc       abc      abc
1      456      def       def      def
2      789      ghi       ghi      ghi
3      111      xyz       xyz      xyz
4      234      mnp       mnp      mnp

编辑:

boolean indexing and numpy.in1d的另一个解决方案:

df = pd.concat([df1, df2[~np.in1d(df2['user_id'], df1['user_id'])]], ignore_index=True)
print (df)
   user_id username firstname lastname
0      123      abc       abc      abc
1      456      def       def      def
2      789      ghi       ghi      ghi
3      111      xyz       xyz      xyz
4      234      mnp       mnp      mnp

一种带掩码的方法 -

def app1(df1,df2):
    df20 = df2[~df2.user_id.isin(df1.user_id)]
    return pd.concat([df1, df20],axis=0)

还有两种方法使用底层数组数据,np.in1dnp.searchsorted 来获取匹配掩码,然后堆叠这两个数据并从堆叠的数组数据构建输出数据帧 -

def app2(df1,df2):    
    df20_arr = df2.values[~np.in1d(df1.user_id.values, df2.user_id.values)]
    arr = np.vstack(( df1.values, df20_arr ))
    df_out = pd.DataFrame(arr, columns= df1.columns)
    return df_out

def app3(df1,df2):
    a = df1.values
    b = df2.values

    df20_arr = b[~np.in1d(a[:,0], b[:,0])]
    arr = np.vstack(( a, df20_arr ))
    df_out = pd.DataFrame(arr, columns= df1.columns)
    return df_out

def app4(df1,df2):
    a = df1.values
    b = df2.values

    b0 = b[:,0].astype(int)
    as0 = np.sort(a[:,0].astype(int))
    df20_arr = b[as0[np.searchsorted(as0,b0)] != b0]
    arr = np.vstack(( a, df20_arr ))
    df_out = pd.DataFrame(arr, columns= df1.columns)
    return df_out

给定样本的时间 -

In [49]: %timeit app1(df1,df2)
    ...: %timeit app2(df1,df2)
    ...: %timeit app3(df1,df2)
    ...: %timeit app4(df1,df2)
    ...: 
1000 loops, best of 3: 753 µs per loop
10000 loops, best of 3: 192 µs per loop
10000 loops, best of 3: 181 µs per loop
10000 loops, best of 3: 171 µs per loop

# @jezrael's edited solution
In [85]: %timeit pd.concat([df1, df2[~np.in1d(df2['user_id'], df1['user_id'])]], ignore_index=True)
1000 loops, best of 3: 614 µs per loop

看看这些在更大的数据集上的表现会很有趣。

另一种方法是使用 np.in1d 检查是否重复 user_id。

pd.concat([df1,df2[df2.user_id.isin(np.setdiff1d(df2.user_id,df1.user_id))]])

或者使用集合从 df1 和 df2 的合并记录中获取唯一行。这个好像快了好几倍

pd.DataFrame(data=np.vstack({tuple(row) for row in np.r_[df1.values,df2.values]}),columns=df1.columns)

时间:

%timeit pd.concat([df1,df2[df2.user_id.isin(np.setdiff1d(df2.user_id,df1.user_id))]])
1000 loops, best of 3: 2.48 ms per loop

%timeit pd.DataFrame(data=np.vstack({tuple(row) for row in np.r_[df1.values,df2.values]}),columns=df1.columns)

1000 loops, best of 3: 632 µs per loop

也可以使用 append + drop_duplicates.

df1.append(df2)
df1.drop_duplicates(inplace=True)