如何使用带有权重的预定义/训练 (hdf5) 文件来预测 class 的新脑电图数据?

How to use predefined/ trained (hdf5) file with wights to predict a class of new eeg data?

我有一个名为 (bestmodel.hdf5) 的预定义文件,它是使用 Keras 库 (python) 和 theano 创建的

使用以下代码训练的模型。

# set parameters
batch_size = 1280
nb_epoch = 3000 #6000
l1_decay=0.00
l2_decay=0 # .5
# 0.01  0.06
sigma=0.005
in_drop_rate = .2
drop_rate = .5

print (tr_X.shape[1])
# set network layout
model = Sequential()
model.add(Dense(2184, input_shape=(tr_X.shape[1],)
                , init='he_normal', W_regularizer=l1_l2(l1=l1_decay, l2=l2_decay)))
model.add(GaussianNoise(sigma))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(in_drop_rate))


model.add(Dense(1310, init='he_normal', W_regularizer=l1_l2(l1=l1_decay, l2=l2_decay)))
model.add(GaussianNoise(sigma))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(drop_rate))

model.add(Dense(786, init='he_normal', W_regularizer=l1_l2(l1=l1_decay, l2=l2_decay)))
model.add(GaussianNoise(sigma))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(drop_rate))

model.add(Dense(472, init='he_normal', W_regularizer=l1_l2(l1=l1_decay, l2=l2_decay)))
model.add(GaussianNoise(sigma))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(drop_rate))


model.add(Dense(4, W_regularizer=l1_l2(l1=l1_decay, l2=l2_decay)))
model.add(Activation('softmax'))

# Callbacks
model_checkpoint = ModelCheckpoint('best_model.hdf5', monitor='val_loss', save_best_only=True)
early = EarlyStopping(monitor='val_loss', patience=600, verbose=0)

# fit and evaluate the model
model.compile(loss='categorical_crossentropy',
              optimizer=Adam(lr=0.001))#SGD(lr=0.0019, momentum=0.9, decay=0.0, nesterov=True))
history = model.fit(tr_X, tr_y, batch_size=batch_size,
                    nb_epoch=nb_epoch, verbose=0,  callbacks=[early, model_checkpoint],
                    validation_data=(va_X, va_y))
model.load_weights('best_model.hdf5')
tr_pr = model.predict(tr_X, batch_size=batch_size, verbose=0)

但是,为了测试真实数据(形成实验),我有不同的输入大小(例如,我有 552 而不是 2184)

因此,读取hdf5权重文件并用它来预测数据的class。我写了以下内容:

# set parameters
batch_size = 4
l1_decay=0.00
l2_decay=0 # .5
# 0.01  0.06
sigma=0.005
in_drop_rate = .2
drop_rate = .5

# set network layout
model = Sequential()
model.add(Dense(552, input_shape=(552,)
                , init='he_normal', W_regularizer=regularizers.l1_l2(l1=l1_decay, l2=l2_decay)))
model.add(GaussianNoise(sigma))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(in_drop_rate))


model.add(Dense(331, init='he_normal', W_regularizer=regularizers.l1_l2(l1=l1_decay, l2=l2_decay)))
model.add(GaussianNoise(sigma))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(drop_rate))

model.add(Dense(189, init='he_normal', W_regularizer=regularizers.l1_l2(l1=l1_decay, l2=l2_decay)))
model.add(GaussianNoise(sigma))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(drop_rate))

model.add(Dense(119, init='he_normal', W_regularizer=regularizers.l1_l2(l1=l1_decay, l2=l2_decay)))
model.add(GaussianNoise(sigma))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(drop_rate))

model.add(Dense(4, W_regularizer=regularizers.l1_l2(l1=l1_decay, l2=l2_decay)))
model.add(Activation('softmax'))


model.load_weights('best_model.hdf5')
te_pr = model.predict(X, batch_size=batch_size, verbose=0)

当我 运行 代码时,出现以下异常:

C:\Users\M\Desktop\Dr Abeer Folder\Emotion Project_code and dataset\End User\Experiment_Calculation.py:106: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(119, kernel_regularizer=<keras.reg..., kernel_initializer="he_normal")`

model.add(Dense(119, init='he_normal', W_regularizer=regularizers.l1_l2(l1=l1_decay, l2=l2_decay)))


C:\Users\M\Desktop\Dr Abeer Folder\Emotion Project_code and dataset\End User\Experiment_Calculation.py:112: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(4, kernel_regularizer=<keras.reg...)`

Traceback (most recent call last):

File "C:\Users\M\Desktop\Dr Abeer Folder\Emotion Project_code and dataset\End User\main2.py", line 88, in BrowseFileHandler

expcal.calclate_Experiment()

File "C:\Users\M\Desktop\Dr Abeer Folder\Emotion Project_code and dataset\End User\Experiment_Calculation.py", line 66, in calclate_Experiment

predictions = DNN(X)

File "C:\Users\M\Desktop\Dr Abeer Folder\Emotion Project_code and dataset\End User\Experiment_Calculation.py", line 117, in DNN

te_pr = model.predict(X, batch_size=batch_size, verbose=0)

File "C:\Users\M\AppData\Roaming\Python\Python27\site-packages\keras\models.py", line 902, in predict

return self.model.predict(x, batch_size=batch_size, verbose=verbose)

File "C:\Users\M\AppData\Roaming\Python\Python27\site-packages\keras\engine\training.py", line 1585, in predict

batch_size=batch_size, verbose=verbose)

File "C:\Users\M\AppData\Roaming\Python\Python27\site-packages\keras\engine\training.py", line 1212, in _predict_loop

batch_outs = f(ins_batch)

File "C:\Users\M\AppData\Roaming\Python\Python27\site-packages\keras\backend\theano_backend.py", line 1158, in __call__

return self.function(*inputs)

File "C:\Users\M\AppData\Roaming\Python\Python27\site-packages\theano\compile\function_module.py", line 898, in __call__

storage_map=getattr(self.fn, 'storage_map', None))

File "C:\Users\M\AppData\Roaming\Python\Python27\site-packages\theano\gof\link.py", line 325, in raise_with_op

reraise(exc_type, exc_value, exc_trace)

File "C:\Users\M\AppData\Roaming\Python\Python27\site-packages\theano\compile\function_module.py", line 884, in __call__

self.fn() if output_subset is None else\

ValueError: dimension mismatch in args to gemm (4,552)x(2184,2184)->(4,2184)

Apply node that caused the error: GpuDot22(GpuFromHost.0, dense_1/kernel)

Toposort index: 28

Inputs types: [CudaNdarrayType(float32, matrix), CudaNdarrayType(float32, matrix)]

Inputs shapes: [(4, 552), (2184, 2184)]

Inputs strides: [(552, 1), (2184, 1)]

Inputs values: ['not shown', 'not shown']

Outputs clients: [[GpuElemwise{Add}[(0, 0)](GpuDot22.0, 
GpuDimShuffle{x,0}.0), GpuElemwise{Composite{(i0 + i1 + (i2 * i3))}}[(0, 3)]
(GpuDot22.0, GpuDimShuffle{x,0}.0, CudaNdarrayConstant{[[ 0.005]]}, GpuReshape{2}.0)]]



HINT: Re-running with most Theano optimization disabled could give you a back-trace of when this node was created. This can be done with by setting the Theano flag 'optimizer=fast_compile'. If that does not work, Theano optimizations can be disabled with 'optimizer=None'.

HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and storage map footprint of this apply node.


model.add(Dense(4, W_regularizer=regularizers.l1_l2(l1=l1_decay, l2=l2_decay)))

任何人都可以帮助理解这个问题。我是这个领域的新手,尤其是在使用 Keras 和 theano 方面?我该如何解决?有没有办法改变预测模型?

此致,

这很简单。

您训练的模型的第一层是 2184x2184 矩阵。因此,您保存的权重是针对 2184 输入进行训练的,并且它们已适应您正在训练的输入类型。

如果我理解正确的话,您想将此矩阵应用于 552 长度的输入...您正在构建一个模型,其中第一层是 552x552 矩阵,并且您想将 2184x2184 矩阵加载到其中...只是没有办法做到这一点......这是行不通的,你的输入应该完全相同。您无法更改经过训练的模型。

我希望你明白为什么它不起作用 :-) 如果不明白,请要求澄清