该程序花费的时间太长 运行
This program is taking way too long to run
这段代码花费了很长时间 运行。
它的目的是在文本文件中找到最常见的单词。
它在Python 3.5.1.
代码:
cTR = []
cTRC = []
file = open("fileToCompress3.txt","r")
analysis = file.read().split(' ')
file.close()
##### Most Common Word #####
print(1)
for i in range(len(analysis)):
if analysis[i] not in cTR:
cTR.extend([analysis[i]])
cTRC.extend([1])
elif analysis[i] in cTR:
for j in range(len(cTR)):
if cTR[j] == analysis[i]:
use = j
break
cTRC[use] = cTRC[use] + 1
谢谢您,非常感谢您的帮助!
是的,这是一种非常低效的方法 – ϴ(n²) 次。 Python 有 a built-in counter type 进行 ϴ(n) 比较:
from collections import Counter
with open("fileToCompress3.txt", "r", encoding="utf-8") as f:
words = f.read().split()
word_counts = Counter(words)
print(word_counts.most_common(1))
这段代码花费了很长时间 运行。
它的目的是在文本文件中找到最常见的单词。
它在Python 3.5.1.
代码:
cTR = []
cTRC = []
file = open("fileToCompress3.txt","r")
analysis = file.read().split(' ')
file.close()
##### Most Common Word #####
print(1)
for i in range(len(analysis)):
if analysis[i] not in cTR:
cTR.extend([analysis[i]])
cTRC.extend([1])
elif analysis[i] in cTR:
for j in range(len(cTR)):
if cTR[j] == analysis[i]:
use = j
break
cTRC[use] = cTRC[use] + 1
谢谢您,非常感谢您的帮助!
是的,这是一种非常低效的方法 – ϴ(n²) 次。 Python 有 a built-in counter type 进行 ϴ(n) 比较:
from collections import Counter
with open("fileToCompress3.txt", "r", encoding="utf-8") as f:
words = f.read().split()
word_counts = Counter(words)
print(word_counts.most_common(1))