为什么用于斐波那契计算的简单 Scala tailrec 循环比 Java 循环快 3 倍?

Why simple Scala tailrec loop for fibonacci calculation is faster in 3x times than Java loop?

斯卡拉

代码:

@annotation.tailrec
private def fastLoop(n: Int, a: Long = 0, b: Long = 1): Long = 
  if (n > 1) fastLoop(n - 1, b, a + b) else b

字节码:

  private long fastLoop(int, long, long);
    Code:
       0: iload_1
       1: iconst_1
       2: if_icmple     21
       5: iload_1
       6: iconst_1
       7: isub
       8: lload         4
      10: lload_2
      11: lload         4
      13: ladd
      14: lstore        4
      16: lstore_2
      17: istore_1
      18: goto          0
      21: lload         4
      23: lreturn

结果是 53879289.462 ± 6289454.961 ops/s:

https://travis-ci.org/plokhotnyuk/scala-vs-java/jobs/56117116#L2909

Java

代码:

private long fastLoop(int n, long a, long b) {
    while (n > 1) {
        long c = a + b;
        a = b;
        b = c;
        n--;
    }
    return b;
}

字节码:

  private long fastLoop(int, long, long);
    Code:
       0: iload_1
       1: iconst_1
       2: if_icmple     24
       5: lload_2
       6: lload         4
       8: ladd
       9: lstore        6
      11: lload         4
      13: lstore_2
      14: lload         6
      16: lstore        4
      18: iinc          1, -1
      21: goto          0
      24: lload         4
      26: lreturn

结果是 17444340.812 ± 9508030.117 ops/s:

https://travis-ci.org/plokhotnyuk/scala-vs-java/jobs/56117116#L2881

是的,这取决于环境参数(JDK 版本,CPU 型号和 RAM 频率)和动态状态。但是,为什么在相同环境下,大多数相同的字节码可以在函数参数范围内产生稳定的 2x-3x 差异?

这里是 ops/s 不同函数参数值的数字列表,来自我的带有 Intel(R) Core(TM) i7-2640M CPU @ 2.80GHz(最大 3.50GHz)的笔记本,内存 12Gb DDR3-1333,Ubuntu 14.10,Oracle JDK 1.8.0_40-b25 64 位:

[info] Benchmark            (n)   Mode  Cnt          Score          Error  Units
[info] JavaFibonacci.loop     2  thrpt    5  171776163.027 ±  4620419.353  ops/s
[info] JavaFibonacci.loop     4  thrpt    5  144793748.362 ± 25506649.671  ops/s
[info] JavaFibonacci.loop     8  thrpt    5   67271848.598 ± 15133193.309  ops/s
[info] JavaFibonacci.loop    16  thrpt    5   54552795.336 ± 17398924.190  ops/s
[info] JavaFibonacci.loop    32  thrpt    5   41156886.101 ± 12905023.289  ops/s
[info] JavaFibonacci.loop    64  thrpt    5   24407771.671 ±  4614357.030  ops/s
[info] ScalaFibonacci.loop    2  thrpt    5  148926292.076 ± 23673126.125  ops/s
[info] ScalaFibonacci.loop    4  thrpt    5  139184195.527 ± 30616384.925  ops/s
[info] ScalaFibonacci.loop    8  thrpt    5  109050091.514 ± 23506756.224  ops/s
[info] ScalaFibonacci.loop   16  thrpt    5   81290743.288 ±  5214733.740  ops/s
[info] ScalaFibonacci.loop   32  thrpt    5   38937420.431 ±  8324732.107  ops/s
[info] ScalaFibonacci.loop   64  thrpt    5   22641295.988 ±  5961435.507  ops/s

附加问题是 "why values of ops/s are decreasing in non-linear way as above?"

是的,我错了,错过了被测试的方法不仅仅是 fastLoop 调用:

Scala

  @Benchmark
  def loop(): BigInt =
    if (n > 92) loop(n - 91, 4660046610375530309L, 7540113804746346429L)
    else fastLoop(n)

Java

 @Benchmark
    public BigInteger loop() {
        return n > 92 ?
                loop(n - 91, BigInteger.valueOf(4660046610375530309L), BigInteger.valueOf(7540113804746346429L)) :
                BigInteger.valueOf(fastLoop(n, 0, 1));
    }

正如 Aleksey 所指出的,很多时间花在了从 Long/longBigInt/BigInteger 的转换上。

我编写了单独的基准测试,仅测试 fastLoop(n, 0, 1) 调用。以下是他们的结果:

[info] JavaFibonacci.fastLoop     2  thrpt    5  338071686.910 ± 66146042.535  ops/s
[info] JavaFibonacci.fastLoop     4  thrpt    5  231066635.073 ±  3702419.585  ops/s
[info] JavaFibonacci.fastLoop     8  thrpt    5  174832245.690 ± 36491363.939  ops/s
[info] JavaFibonacci.fastLoop    16  thrpt    5   95162799.968 ± 16151609.596  ops/s
[info] JavaFibonacci.fastLoop    32  thrpt    5   60197918.766 ± 10662747.434  ops/s
[info] JavaFibonacci.fastLoop    64  thrpt    5   29564087.602 ±  3610164.011  ops/s
[info] ScalaFibonacci.fastLoop    2  thrpt    5  336588218.560 ± 56762496.725  ops/s
[info] ScalaFibonacci.fastLoop    4  thrpt    5  224918874.670 ± 35499107.133  ops/s
[info] ScalaFibonacci.fastLoop    8  thrpt    5  121952667.394 ± 17314931.711  ops/s
[info] ScalaFibonacci.fastLoop   16  thrpt    5   96573968.960 ± 12757890.175  ops/s
[info] ScalaFibonacci.fastLoop   32  thrpt    5   59462408.940 ± 14924369.138  ops/s
[info] ScalaFibonacci.fastLoop   64  thrpt    5   28922994.377 ±  7209467.197  ops/s

我学到的教训:

  • Scala implicit 会消耗大量性能,同时又容易被忽视;

  • 与 Java 的 BigInteger 相比,Scala 中 BigInt 值的兑现可以加快某些函数的速度。