如果所有行在其列中只有一个值,则折叠 Pandas 数据框中的行

Collapsing rows in a Pandas dataframe if all rows have only one value in their columns

我有关注DF

         col1  |  col2   | col3   | col4   | col5  | col6
    0    -     |   15.0  |  -     |  -     |   -   |  -
    1    -     |   -     |  -     |  -     |   -   |  US
    2    -     |   -     |  -     |  Large |   -   |  -
    3    ABC1  |   -     |  -     |  -     |   -   |  -
    4    -     |   -     |  24RA  |  -     |   -   |  -
    5    -     |   -     |  -     |  -     |   345 |  -

我想按如下方式将行折叠成一行

    output DF:
         col1  |  col2    | col3   | col4   | col5  | col6
    0    ABC1  |   15.0   |  24RA  |  Large |   345 |  US

我不想遍历列,但想使用 pandas 来实现。

选项 0
超级简单

pd.concat([pd.Series(df[c].dropna().values, name=c) for c in df], axis=1)

   col1  col2  col3   col4   col5 col6
0  ABC1  15.0  24RA  Large  345.0   US

我们能否在每一列处理多个值?
当然可以!

df.loc[2, 'col3'] = 'Test'

   col1  col2  col3   col4   col5 col6
0  ABC1  15.0  Test  Large  345.0   US
1   NaN   NaN  24RA    NaN    NaN  NaN

选项 1
像外科医生一样使用 np.where 的广义解决方案

v = df.values
i, j = np.where(np.isnan(v))

s = pd.Series(v[i, j], df.columns[j])

c = s.groupby(level=0).cumcount()
s.index = [c, s.index]
s.unstack(fill_value='-')  # <-- don't fill to get NaN

   col1  col2  col3   col4 col5 col6
0  ABC1  15.0  24RA  Large  345   US

df.loc[2, 'col3'] = 'Test'

v = df.values
i, j = np.where(np.isnan(v))

s = pd.Series(v[i, j], df.columns[j])

c = s.groupby(level=0).cumcount()
s.index = [c, s.index]
s.unstack(fill_value='-')  # <-- don't fill to get NaN

   col1  col2  col3   col4 col5 col6
0  ABC1  15.0  Test  Large  345   US
1     -     -  24RA      -    -    -

选项 2
mask 使空值然后 stack 摆脱它们

或者我们可以

# This should work even if `'-'` are NaN
# but you can skip the `.mask(df == '-')`
s = df.mask(df == '-').stack().reset_index(0, drop=True)
c = s.groupby(level=0).cumcount()
s.index = [c, s.index]
s.unstack(fill_value='-')

   col1  col2  col3   col4 col5 col6
0  ABC1  15.0  Test  Large  345   US
1     -     -  24RA      -    -    -

你可以使用max,但你需要转换字符串值列中的空值(不幸的是,这有点难看)

>>> df = pd.DataFrame({'col1':[np.nan, "ABC1"], 'col2':[15.0, np.nan]})

>>> df.apply(lambda c: c.fillna('') if c.dtype is np.dtype('O') else c).max()
col1    ABC1
col2      15
dtype: object

您也可以结合回填和前填来填补空白,如果只想将其应用于您的某些列,这可能很有用:

>>> df.apply(lambda c: c.fillna(method='bfill').fillna(method='ffill'))