在 dataframe 的 groupby 中平铺
Tiling in groupby on dataframe
我有一个数据框,其中包含 returns、大小和几个日期的 sedols。
我的目标是确定每个日期特定条件的最高值和最低值,即我想要每个日期的前十分位数最大尺寸条目和底部十分位数最小尺寸条目,并通过 'xx' 和 'yy'.
我很困惑如何在分组和创建新列时应用平铺,这是我已有的。
import pandas as pd
import numpy as np
import datetime as dt
from random import choice
from string import ascii_uppercase
def create_dummy_data(start_date, days, entries_pday):
date_sequence_lst = [dt.datetime.strptime(start_date,'%Y-%m-%d') +
dt.timedelta(days=x) for x in range(0,days)]
date_sequence_lst = date_sequence_lst * entries_pday
returns_lst = [round(np.random.uniform(low=-0.10,high=0.20),2) for _ in range(entries_pday*days)]
size_lst = [round(np.random.uniform(low=10.00,high=10000.00),0) for _ in range(entries_pday*days)]
rdm_sedol_lst = [(''.join(choice(ascii_uppercase) for i in range(7))) for x in range(entries_pday)]
rdm_sedol_lst = rdm_sedol_lst * days
dates_returns_df = pd.DataFrame({'Date':date_sequence_lst , 'Sedols':rdm_sedol_lst, 'Returns':returns_lst,'Size':size_lst})
dates_returns_df = dates_returns_df.sort_values('Date',ascending=True)
dates_returns_df = dates_returns_df.reset_index(drop=True)
return dates_returns_df
def order_df_by(df_in,column_name):
df_out = df_in.sort_values(['Date',column_name],ascending=[True,False])
return df_out
def get_ntile(df_in,ntile):
df_in['Tiled'] = df_in.groupby(['Date'])['Size'].transform(lambda x : pd.qcut(x,ntile))
return df_in
if __name__ == "__main__":
# create dummy returns
data_df = create_dummy_data('2001-01-01',31,10)
# sort by attribute
data_sorted_df = order_df_by(data_df,'Size')
#ntile data per date
data_ntiled = get_ntile(data_sorted_df, 10)
for key, item in data_ntiled:
print(data_ntiled.get_group(key))
到目前为止,我希望每个日期都基于 'Size' 得到十分位数的结果,下一步将是仅针对十分位数 1 和十分位数 10 进行过滤,并标记条目 'xx' 和 'yy' 分别.
谢谢
考虑在 pandas.qcut 方法上使用 transform
,标签 1 到 ntile+1 用于 decile 列,然后有条件地设置 flag 和 np.where
使用十分位数:
...
def get_ntile(df_in, ntile):
df_in['Tiled'] = df_in.groupby(['Date'])['Size'].transform(lambda x: pd.qcut(x, ntile, labels=list(range(1, ntile+1))))
return df_in
if __name__ == "__main__":
# create dummy returns
data_df = create_dummy_data('2001-01-01',31,10)
# sort by attribute
data_sorted_df = order_df_by(data_df,'Size')
#ntile data per date
data_ntiled = get_ntile(data_sorted_df, 10)
data_ntiled['flag'] = np.where(data_ntiled['Tiled']==1.0, 'YY',
np.where(data_ntiled['Tiled']==10.0, 'XX', np.nan))
print(data_ntiled.reset_index(drop=True).head(15))
# Date Returns Sedols Size Tiled flag
# 0 2001-01-01 -0.03 TEEADVJ 8942.0 10.0 XX
# 1 2001-01-01 -0.03 PDBWGBJ 7142.0 9.0 nan
# 2 2001-01-01 0.03 QNVVPIC 6995.0 8.0 nan
# 3 2001-01-01 0.04 NTKEAKB 6871.0 7.0 nan
# 4 2001-01-01 0.20 ZVVCLSJ 6541.0 6.0 nan
# 5 2001-01-01 0.12 IJKXLIF 5131.0 5.0 nan
# 6 2001-01-01 0.14 HVPDRIU 4490.0 4.0 nan
# 7 2001-01-01 -0.08 XNOGFET 3397.0 3.0 nan
# 8 2001-01-01 -0.06 JOARYWC 2582.0 2.0 nan
# 9 2001-01-01 0.12 FVKBQGU 723.0 1.0 YY
# 10 2001-01-02 0.03 ZVVCLSJ 9291.0 10.0 XX
# 11 2001-01-02 0.14 HVPDRIU 8875.0 9.0 nan
# 12 2001-01-02 0.08 PDBWGBJ 7496.0 8.0 nan
# 13 2001-01-02 0.02 FVKBQGU 7307.0 7.0 nan
# 14 2001-01-02 -0.01 QNVVPIC 7159.0 6.0 nan
我有一个数据框,其中包含 returns、大小和几个日期的 sedols。
我的目标是确定每个日期特定条件的最高值和最低值,即我想要每个日期的前十分位数最大尺寸条目和底部十分位数最小尺寸条目,并通过 'xx' 和 'yy'.
我很困惑如何在分组和创建新列时应用平铺,这是我已有的。
import pandas as pd
import numpy as np
import datetime as dt
from random import choice
from string import ascii_uppercase
def create_dummy_data(start_date, days, entries_pday):
date_sequence_lst = [dt.datetime.strptime(start_date,'%Y-%m-%d') +
dt.timedelta(days=x) for x in range(0,days)]
date_sequence_lst = date_sequence_lst * entries_pday
returns_lst = [round(np.random.uniform(low=-0.10,high=0.20),2) for _ in range(entries_pday*days)]
size_lst = [round(np.random.uniform(low=10.00,high=10000.00),0) for _ in range(entries_pday*days)]
rdm_sedol_lst = [(''.join(choice(ascii_uppercase) for i in range(7))) for x in range(entries_pday)]
rdm_sedol_lst = rdm_sedol_lst * days
dates_returns_df = pd.DataFrame({'Date':date_sequence_lst , 'Sedols':rdm_sedol_lst, 'Returns':returns_lst,'Size':size_lst})
dates_returns_df = dates_returns_df.sort_values('Date',ascending=True)
dates_returns_df = dates_returns_df.reset_index(drop=True)
return dates_returns_df
def order_df_by(df_in,column_name):
df_out = df_in.sort_values(['Date',column_name],ascending=[True,False])
return df_out
def get_ntile(df_in,ntile):
df_in['Tiled'] = df_in.groupby(['Date'])['Size'].transform(lambda x : pd.qcut(x,ntile))
return df_in
if __name__ == "__main__":
# create dummy returns
data_df = create_dummy_data('2001-01-01',31,10)
# sort by attribute
data_sorted_df = order_df_by(data_df,'Size')
#ntile data per date
data_ntiled = get_ntile(data_sorted_df, 10)
for key, item in data_ntiled:
print(data_ntiled.get_group(key))
到目前为止,我希望每个日期都基于 'Size' 得到十分位数的结果,下一步将是仅针对十分位数 1 和十分位数 10 进行过滤,并标记条目 'xx' 和 'yy' 分别.
谢谢
考虑在 pandas.qcut 方法上使用 transform
,标签 1 到 ntile+1 用于 decile 列,然后有条件地设置 flag 和 np.where
使用十分位数:
...
def get_ntile(df_in, ntile):
df_in['Tiled'] = df_in.groupby(['Date'])['Size'].transform(lambda x: pd.qcut(x, ntile, labels=list(range(1, ntile+1))))
return df_in
if __name__ == "__main__":
# create dummy returns
data_df = create_dummy_data('2001-01-01',31,10)
# sort by attribute
data_sorted_df = order_df_by(data_df,'Size')
#ntile data per date
data_ntiled = get_ntile(data_sorted_df, 10)
data_ntiled['flag'] = np.where(data_ntiled['Tiled']==1.0, 'YY',
np.where(data_ntiled['Tiled']==10.0, 'XX', np.nan))
print(data_ntiled.reset_index(drop=True).head(15))
# Date Returns Sedols Size Tiled flag
# 0 2001-01-01 -0.03 TEEADVJ 8942.0 10.0 XX
# 1 2001-01-01 -0.03 PDBWGBJ 7142.0 9.0 nan
# 2 2001-01-01 0.03 QNVVPIC 6995.0 8.0 nan
# 3 2001-01-01 0.04 NTKEAKB 6871.0 7.0 nan
# 4 2001-01-01 0.20 ZVVCLSJ 6541.0 6.0 nan
# 5 2001-01-01 0.12 IJKXLIF 5131.0 5.0 nan
# 6 2001-01-01 0.14 HVPDRIU 4490.0 4.0 nan
# 7 2001-01-01 -0.08 XNOGFET 3397.0 3.0 nan
# 8 2001-01-01 -0.06 JOARYWC 2582.0 2.0 nan
# 9 2001-01-01 0.12 FVKBQGU 723.0 1.0 YY
# 10 2001-01-02 0.03 ZVVCLSJ 9291.0 10.0 XX
# 11 2001-01-02 0.14 HVPDRIU 8875.0 9.0 nan
# 12 2001-01-02 0.08 PDBWGBJ 7496.0 8.0 nan
# 13 2001-01-02 0.02 FVKBQGU 7307.0 7.0 nan
# 14 2001-01-02 -0.01 QNVVPIC 7159.0 6.0 nan