在 dataframe 的 groupby 中平铺

Tiling in groupby on dataframe

我有一个数据框,其中包含 returns、大小和几个日期的 sedols。

我的目标是确定每个日期特定条件的最高值和最低值,即我想要每个日期的前十分位数最大尺寸条目和底部十分位数最小尺寸条目,并通过 'xx' 和 'yy'.

我很困惑如何在分组和创建新列时应用平铺,这是我已有的。

import pandas as pd
import numpy as np
import datetime as dt

from random import choice
from string import ascii_uppercase

def create_dummy_data(start_date, days, entries_pday):
    date_sequence_lst = [dt.datetime.strptime(start_date,'%Y-%m-%d') + 
dt.timedelta(days=x) for x in range(0,days)]
    date_sequence_lst = date_sequence_lst * entries_pday                
    returns_lst = [round(np.random.uniform(low=-0.10,high=0.20),2) for _ in range(entries_pday*days)]

    size_lst = [round(np.random.uniform(low=10.00,high=10000.00),0) for _ in range(entries_pday*days)]

    rdm_sedol_lst = [(''.join(choice(ascii_uppercase) for i in range(7))) for x in range(entries_pday)] 
    rdm_sedol_lst = rdm_sedol_lst * days

    dates_returns_df = pd.DataFrame({'Date':date_sequence_lst , 'Sedols':rdm_sedol_lst, 'Returns':returns_lst,'Size':size_lst})
    dates_returns_df = dates_returns_df.sort_values('Date',ascending=True)
    dates_returns_df = dates_returns_df.reset_index(drop=True)
    return dates_returns_df


def order_df_by(df_in,column_name):
    df_out = df_in.sort_values(['Date',column_name],ascending=[True,False])
    return df_out


def get_ntile(df_in,ntile):
    df_in['Tiled'] = df_in.groupby(['Date'])['Size'].transform(lambda x : pd.qcut(x,ntile))
    return df_in

if __name__ == "__main__":
    # create dummy returns
    data_df = create_dummy_data('2001-01-01',31,10)
    # sort by attribute
    data_sorted_df = order_df_by(data_df,'Size')
    #ntile data per date
    data_ntiled = get_ntile(data_sorted_df, 10)

    for key, item in data_ntiled:
        print(data_ntiled.get_group(key))

到目前为止,我希望每个日期都基于 'Size' 得到十分位数的结果,下一步将是仅针对十分位数 1 和十分位数 10 进行过滤,并标记条目 'xx' 和 'yy' 分别.

谢谢

考虑在 pandas.qcut 方法上使用 transform,标签 1 到 ntile+1 用于 decile 列,然后有条件地设置 flagnp.where 使用十分位数:

...
def get_ntile(df_in, ntile):
    df_in['Tiled'] = df_in.groupby(['Date'])['Size'].transform(lambda x: pd.qcut(x, ntile, labels=list(range(1, ntile+1))))
    return df_in

if __name__ == "__main__":
    # create dummy returns
    data_df = create_dummy_data('2001-01-01',31,10)
    # sort by attribute
    data_sorted_df = order_df_by(data_df,'Size')
    #ntile data per date
    data_ntiled = get_ntile(data_sorted_df, 10)

    data_ntiled['flag'] = np.where(data_ntiled['Tiled']==1.0, 'YY',
                                   np.where(data_ntiled['Tiled']==10.0, 'XX', np.nan))

    print(data_ntiled.reset_index(drop=True).head(15))

#          Date  Returns   Sedols    Size   Tiled flag
# 0  2001-01-01    -0.03  TEEADVJ  8942.0    10.0   XX
# 1  2001-01-01    -0.03  PDBWGBJ  7142.0     9.0  nan
# 2  2001-01-01     0.03  QNVVPIC  6995.0     8.0  nan
# 3  2001-01-01     0.04  NTKEAKB  6871.0     7.0  nan
# 4  2001-01-01     0.20  ZVVCLSJ  6541.0     6.0  nan
# 5  2001-01-01     0.12  IJKXLIF  5131.0     5.0  nan
# 6  2001-01-01     0.14  HVPDRIU  4490.0     4.0  nan
# 7  2001-01-01    -0.08  XNOGFET  3397.0     3.0  nan
# 8  2001-01-01    -0.06  JOARYWC  2582.0     2.0  nan
# 9  2001-01-01     0.12  FVKBQGU   723.0     1.0   YY
# 10 2001-01-02     0.03  ZVVCLSJ  9291.0    10.0   XX
# 11 2001-01-02     0.14  HVPDRIU  8875.0     9.0  nan
# 12 2001-01-02     0.08  PDBWGBJ  7496.0     8.0  nan
# 13 2001-01-02     0.02  FVKBQGU  7307.0     7.0  nan
# 14 2001-01-02    -0.01  QNVVPIC  7159.0     6.0  nan