如何反转 Python statsmodels ARIMA 预测中的差异?

How to invert differencing in a Python statsmodels ARIMA forecast?

我正在尝试使用 Python 和 Statsmodels 来研究 ARIMA 预测。具体来说,要使 ARIMA 算法起作用,需要通过差分(或类似方法)使数据静止。问题是:在做出残差预测后,如何反转差分以返回包含差分的趋势和季节性的预测?

(我看到了一个类似的问题here但是,唉,没有发布答案。)

这是我到目前为止所做的(基于掌握Python数据分析最后一章的示例,Magnus Vilhelm Persson;Luiz Felipe Martins) .数据来自DataMarket.

%matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
from statsmodels import tsa 
from statsmodels.tsa import stattools as stt 
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.arima_model import ARIMA 

def is_stationary(df, maxlag=15, autolag=None, regression='ct'): 
    """Test if df is stationary using Augmented 
    Dickey Fuller""" 

    adf_test = stt.adfuller(df,maxlag=maxlag, autolag=autolag, regression=regression) 
    adf = adf_test[0]
    cv_5 = adf_test[4]["5%"]

    result = adf < cv_5    
    return result

def d_param(df, max_lag=12):
    d = 0
    for i in range(1, max_lag):
        if is_stationary(df.diff(i).dropna()):
            d = i
            break;
    return d

def ARMA_params(df):
    p, q = tsa.stattools.arma_order_select_ic(df.dropna(),ic='aic').aic_min_order
    return p, q

# read data
carsales = pd.read_csv('data/monthly-car-sales-in-quebec-1960.csv', 
                   parse_dates=['Month'],  
                   index_col='Month',  
                   date_parser=lambda d:pd.datetime.strptime(d, '%Y-%m'))
carsales = carsales.iloc[:,0] 

# get components
carsales_decomp = seasonal_decompose(carsales, freq=12)
residuals = carsales - carsales_decomp.seasonal - carsales_decomp.trend 
residuals = residuals.dropna()

# fit model
d = d_param(carsales, max_lag=12)
p, q = ARMA_params(residuals)
model = ARIMA(residuals, order=(p, d, q)) 
model_fit = model.fit() 

# plot prediction
model_fit.plot_predict(start='1961-12-01', end='1970-01-01', alpha=0.10) 
plt.legend(loc='upper left') 
plt.xlabel('Year') 
plt.ylabel('Sales')
plt.title('Residuals 1960-1970')
print(arimares.aic, arimares.bic)  

结果图令人满意,但不包括趋势、季节性信息。如何反转差分以重新捕获 trend/seasonality? Residual plot

当时间趋势(或多个)可能是更好的策略时,依靠差分。第 33 期是异常值,如果您忽略它,则会产生后果。

PACF 没有表现出强烈的季节性成分。

与3月、4月、5月、6月相关性强的弱季节性AR。