使用 MPI 散布不同大小的矩阵块
Scatter Matrix Blocks of Different Sizes using MPI
(假设所有矩阵都按行优先顺序存储。)说明该问题的示例是将 10x10 矩阵分布在 3x3 网格上,以便每个节点中子矩阵的大小看起来像
|-----+-----+-----|
| 3x3 | 3x3 | 3x4 |
|-----+-----+-----|
| 3x3 | 3x3 | 3x4 |
|-----+-----+-----|
| 4x3 | 4x3 | 4x4 |
|-----+-----+-----|
我在 Whosebug 上看过很多帖子(例如 sending blocks of 2D array in C using MPI and MPI partition matrix into blocks)。但它们只处理相同大小的块(在这种情况下,我们可以简单地使用 MPI_Type_vector
或 MPI_Type_create_subarray
并且只调用一次 MPI_Scatterv
)。
所以,我想知道在 MPI 中将矩阵分散到处理器网格的最有效方法是什么,其中每个处理器都有一个指定大小的块。
P.S。我也看过 MPI_Type_create_darray
,但它似乎不允许您为每个处理器指定块大小。
不确定这是否适用于您,但它在过去对我有所帮助,因此可能对其他人有用。
我的回答适用于并行 IO 的上下文。问题是,如果你知道你的访问没有重叠,你可以成功 write/read 即使大小可变,使用 MPI_COMM_SELF
我每天使用的一段代码包含:
MPI_File fh;
MPI_File_open(MPI_COMM_SELF, path.c_str(), MPI_MODE_CREATE|MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
// Lot of computation to get the size right
MPI_Datatype filetype;
MPI_Type_create_subarray(gsizes.size(), &gsizes[0], &lsizes[0], &offset[0], MPI_ORDER_C, MPI_FLOAT, &filetype);
MPI_Type_commit(&filetype);
MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native", MPI_INFO_NULL);
MPI_File_write(fh, &block->field[0], block->field.size(), MPI_FLOAT, MPI_STATUS_IGNORE);
MPI_File_close(&fh);
您必须在 MPI 中至少完成一个额外步骤才能执行此操作。
问题是最通用的 gather/scatter 例程 MPI_Scatterv and MPI_Gatherv 允许您传递 counts/displacements 的 "vector" (v),而不仅仅是一个 Scatter 和 Gather 计数,但 types 都被假定为相同。在这里,没有办法解决;每个块的内存布局不同,因此必须用不同的类型来处理。如果块之间只有一处不同——有些块的列数不同,或有些块的行数不同——那么只使用不同的计数就足够了。但是对于不同的列 和 行,计数不会这样做;您确实需要能够指定不同的类型。
所以您真正想要的是一个经常讨论但从未实现的 MPI_Scatterw(其中 w 表示 vv;例如,计数和类型都是向量)例程。但是这样的事情是不存在的。你能得到的最接近的是更一般的 MPI_Alltoallw call, which allows completely general all-to-all sending and receiving of data; as the spec states, "The MPI_ALLTOALLW function generalizes several MPI functions by carefully selecting the input arguments. For example, by making all but one process have sendcounts(i) = 0, this achieves an MPI_SCATTERW function.".
因此,您可以使用 MPI_Alltoallw 执行此操作,方法是让除最初拥有所有数据的进程之外的所有进程(我们假设它在此处为 0 级)将其所有发送计数发送到零。除第一个任务外,所有任务的所有接收计数也将为零——它们将从零级获得的数据量。
对于进程0的发送计数,我们首先必须定义四种不同的类型(4种不同大小的子数组),然后发送计数将全部为1,剩下的唯一部分就是计算发送位移(与 scatterv 不同,这里以字节为单位,因为没有一种类型可以用作单位):
/* 4 types of blocks -
* blocksize*blocksize, blocksize+1*blocksize, blocksize*blocksize+1, blocksize+1*blocksize+1
*/
MPI_Datatype blocktypes[4];
int subsizes[2];
int starts[2] = {0,0};
for (int i=0; i<2; i++) {
subsizes[0] = blocksize+i;
for (int j=0; j<2; j++) {
subsizes[1] = blocksize+j;
MPI_Type_create_subarray(2, globalsizes, subsizes, starts, MPI_ORDER_C, MPI_CHAR, &blocktypes[2*i+j]);
MPI_Type_commit(&blocktypes[2*i+j]);
}
}
/* now figure out the displacement and type of each processor's data */
for (int proc=0; proc<size; proc++) {
int row, col;
rowcol(proc, blocks, &row, &col);
sendcounts[proc] = 1;
senddispls[proc] = (row*blocksize*globalsizes[1] + col*blocksize)*sizeof(char);
int idx = typeIdx(row, col, blocks);
sendtypes[proc] = blocktypes[idx];
}
}
MPI_Alltoallw(globalptr, sendcounts, senddispls, sendtypes,
&(localdata[0][0]), recvcounts, recvdispls, recvtypes,
MPI_COMM_WORLD);
这会起作用。
但问题是 Alltoallw 函数非常通用,实现很难在优化方面做很多事情;所以如果这表现得和分散的相同大小的块一样好,我会感到惊讶。
因此,另一种方法是进行类似于两阶段通信的操作。
最简单的方法是在注意到您可以 几乎 通过单个 MPI_Scatterv()
调用获取所有需要的数据之后:在您的示例中,如果我们以 column=1 和 rows=3(域的大部分块中的行数)的单个列向量为单位进行操作,您可以将几乎所有的全局数据分散到其他处理器。每个处理器获得 3 或 4 个这样的向量,它们分布除全局数组的最后一行之外的所有数据,这可以通过简单的第二个 scatterv 处理。看起来像这样;
/* We're going to be operating mostly in units of a single column of a "normal" sized block.
* There will need to be two vectors describing these columns; one in the context of the
* global array, and one in the local results.
*/
MPI_Datatype vec, localvec;
MPI_Type_vector(blocksize, 1, localsizes[1], MPI_CHAR, &localvec);
MPI_Type_create_resized(localvec, 0, sizeof(char), &localvec);
MPI_Type_commit(&localvec);
MPI_Type_vector(blocksize, 1, globalsizes[1], MPI_CHAR, &vec);
MPI_Type_create_resized(vec, 0, sizeof(char), &vec);
MPI_Type_commit(&vec);
/* The originating process needs to allocate and fill the source array,
* and then define types defining the array chunks to send, and
* fill out senddispls, sendcounts (1) and sendtypes.
*/
if (rank == 0) {
/* create the vector type which will send one column of a "normal" sized-block */
/* then all processors except those in the last row need to get blocksize*vec or (blocksize+1)*vec */
/* will still have to do something to tidy up the last row of values */
/* we need to make the type have extent of 1 char for scattering */
for (int proc=0; proc<size; proc++) {
int row, col;
rowcol(proc, blocks, &row, &col);
sendcounts[proc] = isLastCol(col, blocks) ? blocksize+1 : blocksize;
senddispls[proc] = (row*blocksize*globalsizes[1] + col*blocksize);
}
}
recvcounts = localsizes[1];
MPI_Scatterv(globalptr, sendcounts, senddispls, vec,
&(localdata[0][0]), recvcounts, localvec, 0, MPI_COMM_WORLD);
MPI_Type_free(&localvec);
if (rank == 0)
MPI_Type_free(&vec);
/* now we need to do one more scatter, scattering just the last row of data
* just to the processors on the last row.
* Here we recompute the send counts
*/
if (rank == 0) {
for (int proc=0; proc<size; proc++) {
int row, col;
rowcol(proc, blocks, &row, &col);
sendcounts[proc] = 0;
senddispls[proc] = 0;
if ( isLastRow(row,blocks) ) {
sendcounts[proc] = blocksize;
senddispls[proc] = (globalsizes[0]-1)*globalsizes[1]+col*blocksize;
if ( isLastCol(col,blocks) )
sendcounts[proc] += 1;
}
}
}
recvcounts = 0;
if ( isLastRow(myrow, blocks) ) {
recvcounts = blocksize;
if ( isLastCol(mycol, blocks) )
recvcounts++;
}
MPI_Scatterv(globalptr, sendcounts, senddispls, MPI_CHAR,
&(localdata[blocksize][0]), recvcounts, MPI_CHAR, 0, MPI_COMM_WORLD);
到目前为止一切顺利。但是在决赛 "cleanup" scatterv 期间让大多数处理器无所事事是一种耻辱。
因此,更好的方法是在第一阶段分散所有行,并在第二阶段将数据分散在列中。这里我们创建新的通信器,每个处理器属于两个新的通信器——一个代表同一块行中的其他处理器,另一个代表同一块列中的其他处理器。在第一步中,原始处理器将全局数组的所有行分发给同一列通信器中的其他处理器——这可以在单个 scatterv 中完成。然后,这些处理器使用单个 scatterv 和与前面示例中相同的列数据类型,将列分散到与其所在的同一块行中的每个处理器。结果是两个相当简单的 scatterv 分布所有数据:
/* create communicators which have processors with the same row or column in them*/
MPI_Comm colComm, rowComm;
MPI_Comm_split(MPI_COMM_WORLD, myrow, rank, &rowComm);
MPI_Comm_split(MPI_COMM_WORLD, mycol, rank, &colComm);
/* first, scatter the array by rows, with the processor in column 0 corresponding to each row
* receiving the data */
if (mycol == 0) {
int sendcounts[ blocks[0] ];
int senddispls[ blocks[0] ];
senddispls[0] = 0;
for (int row=0; row<blocks[0]; row++) {
/* each processor gets blocksize rows, each of size globalsizes[1]... */
sendcounts[row] = blocksize*globalsizes[1];
if (row > 0)
senddispls[row] = senddispls[row-1] + sendcounts[row-1];
}
/* the last processor gets one more */
sendcounts[blocks[0]-1] += globalsizes[1];
/* allocate my rowdata */
rowdata = allocchar2darray( sendcounts[myrow], globalsizes[1] );
/* perform the scatter of rows */
MPI_Scatterv(globalptr, sendcounts, senddispls, MPI_CHAR,
&(rowdata[0][0]), sendcounts[myrow], MPI_CHAR, 0, colComm);
}
/* Now, within each row of processors, we can scatter the columns.
* We can do this as we did in the previous example; create a vector
* (and localvector) type and scatter accordingly */
int locnrows = blocksize;
if ( isLastRow(myrow, blocks) )
locnrows++;
MPI_Datatype vec, localvec;
MPI_Type_vector(locnrows, 1, globalsizes[1], MPI_CHAR, &vec);
MPI_Type_create_resized(vec, 0, sizeof(char), &vec);
MPI_Type_commit(&vec);
MPI_Type_vector(locnrows, 1, localsizes[1], MPI_CHAR, &localvec);
MPI_Type_create_resized(localvec, 0, sizeof(char), &localvec);
MPI_Type_commit(&localvec);
int sendcounts[ blocks[1] ];
int senddispls[ blocks[1] ];
if (mycol == 0) {
for (int col=0; col<blocks[1]; col++) {
sendcounts[col] = isLastCol(col, blocks) ? blocksize+1 : blocksize;
senddispls[col] = col*blocksize;
}
}
char *rowptr = (mycol == 0) ? &(rowdata[0][0]) : NULL;
MPI_Scatterv(rowptr, sendcounts, senddispls, vec,
&(localdata[0][0]), sendcounts[mycol], localvec, 0, rowComm);
哪个更简单,应该是性能和健壮性之间比较好的平衡点。
运行 这三种方法都有效:
bash-3.2$ mpirun -np 6 ./allmethods alltoall
Global array:
abcdefg
hijklmn
opqrstu
vwxyzab
cdefghi
jklmnop
qrstuvw
xyzabcd
efghijk
lmnopqr
Method - alltoall
Rank 0:
abc
hij
opq
Rank 1:
defg
klmn
rstu
Rank 2:
vwx
cde
jkl
Rank 3:
yzab
fghi
mnop
Rank 4:
qrs
xyz
efg
lmn
Rank 5:
tuvw
abcd
hijk
opqr
bash-3.2$ mpirun -np 6 ./allmethods twophasevecs
Global array:
abcdefg
hijklmn
opqrstu
vwxyzab
cdefghi
jklmnop
qrstuvw
xyzabcd
efghijk
lmnopqr
Method - two phase, vectors, then cleanup
Rank 0:
abc
hij
opq
Rank 1:
defg
klmn
rstu
Rank 2:
vwx
cde
jkl
Rank 3:
yzab
fghi
mnop
Rank 4:
qrs
xyz
efg
lmn
Rank 5:
tuvw
abcd
hijk
opqr
bash-3.2$ mpirun -np 6 ./allmethods twophaserowcol
Global array:
abcdefg
hijklmn
opqrstu
vwxyzab
cdefghi
jklmnop
qrstuvw
xyzabcd
efghijk
lmnopqr
Method - two phase - row, cols
Rank 0:
abc
hij
opq
Rank 1:
defg
klmn
rstu
Rank 2:
vwx
cde
jkl
Rank 3:
yzab
fghi
mnop
Rank 4:
qrs
xyz
efg
lmn
Rank 5:
tuvw
abcd
hijk
opqr
实现这些方法的代码如下;您可以针对您的问题将块大小设置为更典型的大小,并根据实际数量的处理器 运行 来了解哪种处理器最适合您的应用程序。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mpi.h"
/* auxiliary routines, found at end of program */
char **allocchar2darray(int n, int m);
void freechar2darray(char **a);
void printarray(char **data, int n, int m);
void rowcol(int rank, const int blocks[2], int *row, int *col);
int isLastRow(int row, const int blocks[2]);
int isLastCol(int col, const int blocks[2]);
int typeIdx(int row, int col, const int blocks[2]);
/* first method - alltoallw */
void alltoall(const int myrow, const int mycol, const int rank, const int size,
const int blocks[2], const int blocksize, const int globalsizes[2], const int localsizes[2],
const char *const globalptr, char **localdata) {
/*
* get send and recieve counts ready for alltoallw call.
* everyone will be recieving just one block from proc 0;
* most procs will be sending nothing to anyone.
*/
int sendcounts[ size ];
int senddispls[ size ];
MPI_Datatype sendtypes[size];
int recvcounts[ size ];
int recvdispls[ size ];
MPI_Datatype recvtypes[size];
for (int proc=0; proc<size; proc++) {
recvcounts[proc] = 0;
recvdispls[proc] = 0;
recvtypes[proc] = MPI_CHAR;
sendcounts[proc] = 0;
senddispls[proc] = 0;
sendtypes[proc] = MPI_CHAR;
}
recvcounts[0] = localsizes[0]*localsizes[1];
recvdispls[0] = 0;
/* The originating process needs to allocate and fill the source array,
* and then define types defining the array chunks to send, and
* fill out senddispls, sendcounts (1) and sendtypes.
*/
if (rank == 0) {
/* 4 types of blocks -
* blocksize*blocksize, blocksize+1*blocksize, blocksize*blocksize+1, blocksize+1*blocksize+1
*/
MPI_Datatype blocktypes[4];
int subsizes[2];
int starts[2] = {0,0};
for (int i=0; i<2; i++) {
subsizes[0] = blocksize+i;
for (int j=0; j<2; j++) {
subsizes[1] = blocksize+j;
MPI_Type_create_subarray(2, globalsizes, subsizes, starts, MPI_ORDER_C, MPI_CHAR, &blocktypes[2*i+j]);
MPI_Type_commit(&blocktypes[2*i+j]);
}
}
/* now figure out the displacement and type of each processor's data */
for (int proc=0; proc<size; proc++) {
int row, col;
rowcol(proc, blocks, &row, &col);
sendcounts[proc] = 1;
senddispls[proc] = (row*blocksize*globalsizes[1] + col*blocksize)*sizeof(char);
int idx = typeIdx(row, col, blocks);
sendtypes[proc] = blocktypes[idx];
}
}
MPI_Alltoallw(globalptr, sendcounts, senddispls, sendtypes,
&(localdata[0][0]), recvcounts, recvdispls, recvtypes,
MPI_COMM_WORLD);
}
/* second method: distribute almost all data using colums of size blocksize,
* then clean up the last row with another scatterv */
void twophasevecs(const int myrow, const int mycol, const int rank, const int size,
const int blocks[2], const int blocksize, const int globalsizes[2], const int localsizes[2],
const char *const globalptr, char **localdata) {
int sendcounts[ size ];
int senddispls[ size ];
int recvcounts;
for (int proc=0; proc<size; proc++) {
sendcounts[proc] = 0;
senddispls[proc] = 0;
}
/* We're going to be operating mostly in units of a single column of a "normal" sized block.
* There will need to be two vectors describing these columns; one in the context of the
* global array, and one in the local results.
*/
MPI_Datatype vec, localvec;
MPI_Type_vector(blocksize, 1, localsizes[1], MPI_CHAR, &localvec);
MPI_Type_create_resized(localvec, 0, sizeof(char), &localvec);
MPI_Type_commit(&localvec);
MPI_Type_vector(blocksize, 1, globalsizes[1], MPI_CHAR, &vec);
MPI_Type_create_resized(vec, 0, sizeof(char), &vec);
MPI_Type_commit(&vec);
/* The originating process needs to allocate and fill the source array,
* and then define types defining the array chunks to send, and
* fill out senddispls, sendcounts (1) and sendtypes.
*/
if (rank == 0) {
/* create the vector type which will send one column of a "normal" sized-block */
/* then all processors except those in the last row need to get blocksize*vec or (blocksize+1)*vec */
/* will still have to do something to tidy up the last row of values */
/* we need to make the type have extent of 1 char for scattering */
for (int proc=0; proc<size; proc++) {
int row, col;
rowcol(proc, blocks, &row, &col);
sendcounts[proc] = isLastCol(col, blocks) ? blocksize+1 : blocksize;
senddispls[proc] = (row*blocksize*globalsizes[1] + col*blocksize);
}
}
recvcounts = localsizes[1];
MPI_Scatterv(globalptr, sendcounts, senddispls, vec,
&(localdata[0][0]), recvcounts, localvec, 0, MPI_COMM_WORLD);
MPI_Type_free(&localvec);
if (rank == 0)
MPI_Type_free(&vec);
/* now we need to do one more scatter, scattering just the last row of data
* just to the processors on the last row.
* Here we recompute the sendcounts
*/
if (rank == 0) {
for (int proc=0; proc<size; proc++) {
int row, col;
rowcol(proc, blocks, &row, &col);
sendcounts[proc] = 0;
senddispls[proc] = 0;
if ( isLastRow(row,blocks) ) {
sendcounts[proc] = blocksize;
senddispls[proc] = (globalsizes[0]-1)*globalsizes[1]+col*blocksize;
if ( isLastCol(col,blocks) )
sendcounts[proc] += 1;
}
}
}
recvcounts = 0;
if ( isLastRow(myrow, blocks) ) {
recvcounts = blocksize;
if ( isLastCol(mycol, blocks) )
recvcounts++;
}
MPI_Scatterv(globalptr, sendcounts, senddispls, MPI_CHAR,
&(localdata[blocksize][0]), recvcounts, MPI_CHAR, 0, MPI_COMM_WORLD);
}
/* third method: first distribute rows, then columns, each with a single scatterv */
void twophaseRowCol(const int myrow, const int mycol, const int rank, const int size,
const int blocks[2], const int blocksize, const int globalsizes[2], const int localsizes[2],
const char *const globalptr, char **localdata) {
char **rowdata ;
/* create communicators which have processors with the same row or column in them*/
MPI_Comm colComm, rowComm;
MPI_Comm_split(MPI_COMM_WORLD, myrow, rank, &rowComm);
MPI_Comm_split(MPI_COMM_WORLD, mycol, rank, &colComm);
/* first, scatter the array by rows, with the processor in column 0 corresponding to each row
* receiving the data */
if (mycol == 0) {
int sendcounts[ blocks[0] ];
int senddispls[ blocks[0] ];
senddispls[0] = 0;
for (int row=0; row<blocks[0]; row++) {
/* each processor gets blocksize rows, each of size globalsizes[1]... */
sendcounts[row] = blocksize*globalsizes[1];
if (row > 0)
senddispls[row] = senddispls[row-1] + sendcounts[row-1];
}
/* the last processor gets one more */
sendcounts[blocks[0]-1] += globalsizes[1];
/* allocate my rowdata */
rowdata = allocchar2darray( sendcounts[myrow], globalsizes[1] );
/* perform the scatter of rows */
MPI_Scatterv(globalptr, sendcounts, senddispls, MPI_CHAR,
&(rowdata[0][0]), sendcounts[myrow], MPI_CHAR, 0, colComm);
}
/* Now, within each row of processors, we can scatter the columns.
* We can do this as we did in the previous example; create a vector
* (and localvector) type and scatter accordingly */
int locnrows = blocksize;
if ( isLastRow(myrow, blocks) )
locnrows++;
MPI_Datatype vec, localvec;
MPI_Type_vector(locnrows, 1, globalsizes[1], MPI_CHAR, &vec);
MPI_Type_create_resized(vec, 0, sizeof(char), &vec);
MPI_Type_commit(&vec);
MPI_Type_vector(locnrows, 1, localsizes[1], MPI_CHAR, &localvec);
MPI_Type_create_resized(localvec, 0, sizeof(char), &localvec);
MPI_Type_commit(&localvec);
int sendcounts[ blocks[1] ];
int senddispls[ blocks[1] ];
if (mycol == 0) {
for (int col=0; col<blocks[1]; col++) {
sendcounts[col] = isLastCol(col, blocks) ? blocksize+1 : blocksize;
senddispls[col] = col*blocksize;
}
}
char *rowptr = (mycol == 0) ? &(rowdata[0][0]) : NULL;
MPI_Scatterv(rowptr, sendcounts, senddispls, vec,
&(localdata[0][0]), sendcounts[mycol], localvec, 0, rowComm);
MPI_Type_free(&localvec);
MPI_Type_free(&vec);
if (mycol == 0)
freechar2darray(rowdata);
MPI_Comm_free(&rowComm);
MPI_Comm_free(&colComm);
}
int main(int argc, char **argv) {
int rank, size;
int blocks[2] = {0,0};
const int blocksize=3;
int globalsizes[2], localsizes[2];
char **globaldata;
char *globalptr = NULL;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (rank == 0 && argc < 2) {
fprintf(stderr,"Usage: %s method\n Where method is one of: alltoall, twophasevecs, twophaserowcol\n", argv[0]);
MPI_Abort(MPI_COMM_WORLD,1);
}
/* calculate sizes for a 2d grid of processors */
MPI_Dims_create(size, 2, blocks);
int myrow, mycol;
rowcol(rank, blocks, &myrow, &mycol);
/* create array sizes so that last block has 1 too many rows/cols */
globalsizes[0] = blocks[0]*blocksize+1;
globalsizes[1] = blocks[1]*blocksize+1;
if (rank == 0) {
globaldata = allocchar2darray(globalsizes[0], globalsizes[1]);
globalptr = &(globaldata[0][0]);
for (int i=0; i<globalsizes[0]; i++)
for (int j=0; j<globalsizes[1]; j++)
globaldata[i][j] = 'a'+(i*globalsizes[1] + j)%26;
printf("Global array: \n");
printarray(globaldata, globalsizes[0], globalsizes[1]);
}
/* the local chunk we'll be receiving */
localsizes[0] = blocksize; localsizes[1] = blocksize;
if ( isLastRow(myrow,blocks)) localsizes[0]++;
if ( isLastCol(mycol,blocks)) localsizes[1]++;
char **localdata = allocchar2darray(localsizes[0],localsizes[1]);
if (!strcasecmp(argv[1], "alltoall")) {
if (rank == 0) printf("Method - alltoall\n");
alltoall(myrow, mycol, rank, size, blocks, blocksize, globalsizes, localsizes, globalptr, localdata);
} else if (!strcasecmp(argv[1],"twophasevecs")) {
if (rank == 0) printf("Method - two phase, vectors, then cleanup\n");
twophasevecs(myrow, mycol, rank, size, blocks, blocksize, globalsizes, localsizes, globalptr, localdata);
} else {
if (rank == 0) printf("Method - two phase - row, cols\n");
twophaseRowCol(myrow, mycol, rank, size, blocks, blocksize, globalsizes, localsizes, globalptr, localdata);
}
for (int proc=0; proc<size; proc++) {
if (proc == rank) {
printf("\nRank %d:\n", proc);
printarray(localdata, localsizes[0], localsizes[1]);
}
MPI_Barrier(MPI_COMM_WORLD);
}
freechar2darray(localdata);
if (rank == 0)
freechar2darray(globaldata);
MPI_Finalize();
return 0;
}
char **allocchar2darray(int n, int m) {
char **ptrs = malloc(n*sizeof(char *));
ptrs[0] = malloc(n*m*sizeof(char));
for (int i=0; i<n*m; i++)
ptrs[0][i]='.';
for (int i=1; i<n; i++)
ptrs[i] = ptrs[i-1] + m;
return ptrs;
}
void freechar2darray(char **a) {
free(a[0]);
free(a);
}
void printarray(char **data, int n, int m) {
for (int i=0; i<n; i++) {
for (int j=0; j<m; j++)
putchar(data[i][j]);
putchar('\n');
}
}
void rowcol(int rank, const int blocks[2], int *row, int *col) {
*row = rank/blocks[1];
*col = rank % blocks[1];
}
int isLastRow(int row, const int blocks[2]) {
return (row == blocks[0]-1);
}
int isLastCol(int col, const int blocks[2]) {
return (col == blocks[1]-1);
}
int typeIdx(int row, int col, const int blocks[2]) {
int lastrow = (row == blocks[0]-1);
int lastcol = (col == blocks[1]-1);
return lastrow*2 + lastcol;
}
(假设所有矩阵都按行优先顺序存储。)说明该问题的示例是将 10x10 矩阵分布在 3x3 网格上,以便每个节点中子矩阵的大小看起来像
|-----+-----+-----|
| 3x3 | 3x3 | 3x4 |
|-----+-----+-----|
| 3x3 | 3x3 | 3x4 |
|-----+-----+-----|
| 4x3 | 4x3 | 4x4 |
|-----+-----+-----|
我在 Whosebug 上看过很多帖子(例如 sending blocks of 2D array in C using MPI and MPI partition matrix into blocks)。但它们只处理相同大小的块(在这种情况下,我们可以简单地使用 MPI_Type_vector
或 MPI_Type_create_subarray
并且只调用一次 MPI_Scatterv
)。
所以,我想知道在 MPI 中将矩阵分散到处理器网格的最有效方法是什么,其中每个处理器都有一个指定大小的块。
P.S。我也看过 MPI_Type_create_darray
,但它似乎不允许您为每个处理器指定块大小。
不确定这是否适用于您,但它在过去对我有所帮助,因此可能对其他人有用。
我的回答适用于并行 IO 的上下文。问题是,如果你知道你的访问没有重叠,你可以成功 write/read 即使大小可变,使用 MPI_COMM_SELF
我每天使用的一段代码包含:
MPI_File fh;
MPI_File_open(MPI_COMM_SELF, path.c_str(), MPI_MODE_CREATE|MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
// Lot of computation to get the size right
MPI_Datatype filetype;
MPI_Type_create_subarray(gsizes.size(), &gsizes[0], &lsizes[0], &offset[0], MPI_ORDER_C, MPI_FLOAT, &filetype);
MPI_Type_commit(&filetype);
MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native", MPI_INFO_NULL);
MPI_File_write(fh, &block->field[0], block->field.size(), MPI_FLOAT, MPI_STATUS_IGNORE);
MPI_File_close(&fh);
您必须在 MPI 中至少完成一个额外步骤才能执行此操作。
问题是最通用的 gather/scatter 例程 MPI_Scatterv and MPI_Gatherv 允许您传递 counts/displacements 的 "vector" (v),而不仅仅是一个 Scatter 和 Gather 计数,但 types 都被假定为相同。在这里,没有办法解决;每个块的内存布局不同,因此必须用不同的类型来处理。如果块之间只有一处不同——有些块的列数不同,或有些块的行数不同——那么只使用不同的计数就足够了。但是对于不同的列 和 行,计数不会这样做;您确实需要能够指定不同的类型。
所以您真正想要的是一个经常讨论但从未实现的 MPI_Scatterw(其中 w 表示 vv;例如,计数和类型都是向量)例程。但是这样的事情是不存在的。你能得到的最接近的是更一般的 MPI_Alltoallw call, which allows completely general all-to-all sending and receiving of data; as the spec states, "The MPI_ALLTOALLW function generalizes several MPI functions by carefully selecting the input arguments. For example, by making all but one process have sendcounts(i) = 0, this achieves an MPI_SCATTERW function.".
因此,您可以使用 MPI_Alltoallw 执行此操作,方法是让除最初拥有所有数据的进程之外的所有进程(我们假设它在此处为 0 级)将其所有发送计数发送到零。除第一个任务外,所有任务的所有接收计数也将为零——它们将从零级获得的数据量。
对于进程0的发送计数,我们首先必须定义四种不同的类型(4种不同大小的子数组),然后发送计数将全部为1,剩下的唯一部分就是计算发送位移(与 scatterv 不同,这里以字节为单位,因为没有一种类型可以用作单位):
/* 4 types of blocks -
* blocksize*blocksize, blocksize+1*blocksize, blocksize*blocksize+1, blocksize+1*blocksize+1
*/
MPI_Datatype blocktypes[4];
int subsizes[2];
int starts[2] = {0,0};
for (int i=0; i<2; i++) {
subsizes[0] = blocksize+i;
for (int j=0; j<2; j++) {
subsizes[1] = blocksize+j;
MPI_Type_create_subarray(2, globalsizes, subsizes, starts, MPI_ORDER_C, MPI_CHAR, &blocktypes[2*i+j]);
MPI_Type_commit(&blocktypes[2*i+j]);
}
}
/* now figure out the displacement and type of each processor's data */
for (int proc=0; proc<size; proc++) {
int row, col;
rowcol(proc, blocks, &row, &col);
sendcounts[proc] = 1;
senddispls[proc] = (row*blocksize*globalsizes[1] + col*blocksize)*sizeof(char);
int idx = typeIdx(row, col, blocks);
sendtypes[proc] = blocktypes[idx];
}
}
MPI_Alltoallw(globalptr, sendcounts, senddispls, sendtypes,
&(localdata[0][0]), recvcounts, recvdispls, recvtypes,
MPI_COMM_WORLD);
这会起作用。
但问题是 Alltoallw 函数非常通用,实现很难在优化方面做很多事情;所以如果这表现得和分散的相同大小的块一样好,我会感到惊讶。
因此,另一种方法是进行类似于两阶段通信的操作。
最简单的方法是在注意到您可以 几乎 通过单个 MPI_Scatterv()
调用获取所有需要的数据之后:在您的示例中,如果我们以 column=1 和 rows=3(域的大部分块中的行数)的单个列向量为单位进行操作,您可以将几乎所有的全局数据分散到其他处理器。每个处理器获得 3 或 4 个这样的向量,它们分布除全局数组的最后一行之外的所有数据,这可以通过简单的第二个 scatterv 处理。看起来像这样;
/* We're going to be operating mostly in units of a single column of a "normal" sized block.
* There will need to be two vectors describing these columns; one in the context of the
* global array, and one in the local results.
*/
MPI_Datatype vec, localvec;
MPI_Type_vector(blocksize, 1, localsizes[1], MPI_CHAR, &localvec);
MPI_Type_create_resized(localvec, 0, sizeof(char), &localvec);
MPI_Type_commit(&localvec);
MPI_Type_vector(blocksize, 1, globalsizes[1], MPI_CHAR, &vec);
MPI_Type_create_resized(vec, 0, sizeof(char), &vec);
MPI_Type_commit(&vec);
/* The originating process needs to allocate and fill the source array,
* and then define types defining the array chunks to send, and
* fill out senddispls, sendcounts (1) and sendtypes.
*/
if (rank == 0) {
/* create the vector type which will send one column of a "normal" sized-block */
/* then all processors except those in the last row need to get blocksize*vec or (blocksize+1)*vec */
/* will still have to do something to tidy up the last row of values */
/* we need to make the type have extent of 1 char for scattering */
for (int proc=0; proc<size; proc++) {
int row, col;
rowcol(proc, blocks, &row, &col);
sendcounts[proc] = isLastCol(col, blocks) ? blocksize+1 : blocksize;
senddispls[proc] = (row*blocksize*globalsizes[1] + col*blocksize);
}
}
recvcounts = localsizes[1];
MPI_Scatterv(globalptr, sendcounts, senddispls, vec,
&(localdata[0][0]), recvcounts, localvec, 0, MPI_COMM_WORLD);
MPI_Type_free(&localvec);
if (rank == 0)
MPI_Type_free(&vec);
/* now we need to do one more scatter, scattering just the last row of data
* just to the processors on the last row.
* Here we recompute the send counts
*/
if (rank == 0) {
for (int proc=0; proc<size; proc++) {
int row, col;
rowcol(proc, blocks, &row, &col);
sendcounts[proc] = 0;
senddispls[proc] = 0;
if ( isLastRow(row,blocks) ) {
sendcounts[proc] = blocksize;
senddispls[proc] = (globalsizes[0]-1)*globalsizes[1]+col*blocksize;
if ( isLastCol(col,blocks) )
sendcounts[proc] += 1;
}
}
}
recvcounts = 0;
if ( isLastRow(myrow, blocks) ) {
recvcounts = blocksize;
if ( isLastCol(mycol, blocks) )
recvcounts++;
}
MPI_Scatterv(globalptr, sendcounts, senddispls, MPI_CHAR,
&(localdata[blocksize][0]), recvcounts, MPI_CHAR, 0, MPI_COMM_WORLD);
到目前为止一切顺利。但是在决赛 "cleanup" scatterv 期间让大多数处理器无所事事是一种耻辱。
因此,更好的方法是在第一阶段分散所有行,并在第二阶段将数据分散在列中。这里我们创建新的通信器,每个处理器属于两个新的通信器——一个代表同一块行中的其他处理器,另一个代表同一块列中的其他处理器。在第一步中,原始处理器将全局数组的所有行分发给同一列通信器中的其他处理器——这可以在单个 scatterv 中完成。然后,这些处理器使用单个 scatterv 和与前面示例中相同的列数据类型,将列分散到与其所在的同一块行中的每个处理器。结果是两个相当简单的 scatterv 分布所有数据:
/* create communicators which have processors with the same row or column in them*/
MPI_Comm colComm, rowComm;
MPI_Comm_split(MPI_COMM_WORLD, myrow, rank, &rowComm);
MPI_Comm_split(MPI_COMM_WORLD, mycol, rank, &colComm);
/* first, scatter the array by rows, with the processor in column 0 corresponding to each row
* receiving the data */
if (mycol == 0) {
int sendcounts[ blocks[0] ];
int senddispls[ blocks[0] ];
senddispls[0] = 0;
for (int row=0; row<blocks[0]; row++) {
/* each processor gets blocksize rows, each of size globalsizes[1]... */
sendcounts[row] = blocksize*globalsizes[1];
if (row > 0)
senddispls[row] = senddispls[row-1] + sendcounts[row-1];
}
/* the last processor gets one more */
sendcounts[blocks[0]-1] += globalsizes[1];
/* allocate my rowdata */
rowdata = allocchar2darray( sendcounts[myrow], globalsizes[1] );
/* perform the scatter of rows */
MPI_Scatterv(globalptr, sendcounts, senddispls, MPI_CHAR,
&(rowdata[0][0]), sendcounts[myrow], MPI_CHAR, 0, colComm);
}
/* Now, within each row of processors, we can scatter the columns.
* We can do this as we did in the previous example; create a vector
* (and localvector) type and scatter accordingly */
int locnrows = blocksize;
if ( isLastRow(myrow, blocks) )
locnrows++;
MPI_Datatype vec, localvec;
MPI_Type_vector(locnrows, 1, globalsizes[1], MPI_CHAR, &vec);
MPI_Type_create_resized(vec, 0, sizeof(char), &vec);
MPI_Type_commit(&vec);
MPI_Type_vector(locnrows, 1, localsizes[1], MPI_CHAR, &localvec);
MPI_Type_create_resized(localvec, 0, sizeof(char), &localvec);
MPI_Type_commit(&localvec);
int sendcounts[ blocks[1] ];
int senddispls[ blocks[1] ];
if (mycol == 0) {
for (int col=0; col<blocks[1]; col++) {
sendcounts[col] = isLastCol(col, blocks) ? blocksize+1 : blocksize;
senddispls[col] = col*blocksize;
}
}
char *rowptr = (mycol == 0) ? &(rowdata[0][0]) : NULL;
MPI_Scatterv(rowptr, sendcounts, senddispls, vec,
&(localdata[0][0]), sendcounts[mycol], localvec, 0, rowComm);
哪个更简单,应该是性能和健壮性之间比较好的平衡点。
运行 这三种方法都有效:
bash-3.2$ mpirun -np 6 ./allmethods alltoall
Global array:
abcdefg
hijklmn
opqrstu
vwxyzab
cdefghi
jklmnop
qrstuvw
xyzabcd
efghijk
lmnopqr
Method - alltoall
Rank 0:
abc
hij
opq
Rank 1:
defg
klmn
rstu
Rank 2:
vwx
cde
jkl
Rank 3:
yzab
fghi
mnop
Rank 4:
qrs
xyz
efg
lmn
Rank 5:
tuvw
abcd
hijk
opqr
bash-3.2$ mpirun -np 6 ./allmethods twophasevecs
Global array:
abcdefg
hijklmn
opqrstu
vwxyzab
cdefghi
jklmnop
qrstuvw
xyzabcd
efghijk
lmnopqr
Method - two phase, vectors, then cleanup
Rank 0:
abc
hij
opq
Rank 1:
defg
klmn
rstu
Rank 2:
vwx
cde
jkl
Rank 3:
yzab
fghi
mnop
Rank 4:
qrs
xyz
efg
lmn
Rank 5:
tuvw
abcd
hijk
opqr
bash-3.2$ mpirun -np 6 ./allmethods twophaserowcol
Global array:
abcdefg
hijklmn
opqrstu
vwxyzab
cdefghi
jklmnop
qrstuvw
xyzabcd
efghijk
lmnopqr
Method - two phase - row, cols
Rank 0:
abc
hij
opq
Rank 1:
defg
klmn
rstu
Rank 2:
vwx
cde
jkl
Rank 3:
yzab
fghi
mnop
Rank 4:
qrs
xyz
efg
lmn
Rank 5:
tuvw
abcd
hijk
opqr
实现这些方法的代码如下;您可以针对您的问题将块大小设置为更典型的大小,并根据实际数量的处理器 运行 来了解哪种处理器最适合您的应用程序。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mpi.h"
/* auxiliary routines, found at end of program */
char **allocchar2darray(int n, int m);
void freechar2darray(char **a);
void printarray(char **data, int n, int m);
void rowcol(int rank, const int blocks[2], int *row, int *col);
int isLastRow(int row, const int blocks[2]);
int isLastCol(int col, const int blocks[2]);
int typeIdx(int row, int col, const int blocks[2]);
/* first method - alltoallw */
void alltoall(const int myrow, const int mycol, const int rank, const int size,
const int blocks[2], const int blocksize, const int globalsizes[2], const int localsizes[2],
const char *const globalptr, char **localdata) {
/*
* get send and recieve counts ready for alltoallw call.
* everyone will be recieving just one block from proc 0;
* most procs will be sending nothing to anyone.
*/
int sendcounts[ size ];
int senddispls[ size ];
MPI_Datatype sendtypes[size];
int recvcounts[ size ];
int recvdispls[ size ];
MPI_Datatype recvtypes[size];
for (int proc=0; proc<size; proc++) {
recvcounts[proc] = 0;
recvdispls[proc] = 0;
recvtypes[proc] = MPI_CHAR;
sendcounts[proc] = 0;
senddispls[proc] = 0;
sendtypes[proc] = MPI_CHAR;
}
recvcounts[0] = localsizes[0]*localsizes[1];
recvdispls[0] = 0;
/* The originating process needs to allocate and fill the source array,
* and then define types defining the array chunks to send, and
* fill out senddispls, sendcounts (1) and sendtypes.
*/
if (rank == 0) {
/* 4 types of blocks -
* blocksize*blocksize, blocksize+1*blocksize, blocksize*blocksize+1, blocksize+1*blocksize+1
*/
MPI_Datatype blocktypes[4];
int subsizes[2];
int starts[2] = {0,0};
for (int i=0; i<2; i++) {
subsizes[0] = blocksize+i;
for (int j=0; j<2; j++) {
subsizes[1] = blocksize+j;
MPI_Type_create_subarray(2, globalsizes, subsizes, starts, MPI_ORDER_C, MPI_CHAR, &blocktypes[2*i+j]);
MPI_Type_commit(&blocktypes[2*i+j]);
}
}
/* now figure out the displacement and type of each processor's data */
for (int proc=0; proc<size; proc++) {
int row, col;
rowcol(proc, blocks, &row, &col);
sendcounts[proc] = 1;
senddispls[proc] = (row*blocksize*globalsizes[1] + col*blocksize)*sizeof(char);
int idx = typeIdx(row, col, blocks);
sendtypes[proc] = blocktypes[idx];
}
}
MPI_Alltoallw(globalptr, sendcounts, senddispls, sendtypes,
&(localdata[0][0]), recvcounts, recvdispls, recvtypes,
MPI_COMM_WORLD);
}
/* second method: distribute almost all data using colums of size blocksize,
* then clean up the last row with another scatterv */
void twophasevecs(const int myrow, const int mycol, const int rank, const int size,
const int blocks[2], const int blocksize, const int globalsizes[2], const int localsizes[2],
const char *const globalptr, char **localdata) {
int sendcounts[ size ];
int senddispls[ size ];
int recvcounts;
for (int proc=0; proc<size; proc++) {
sendcounts[proc] = 0;
senddispls[proc] = 0;
}
/* We're going to be operating mostly in units of a single column of a "normal" sized block.
* There will need to be two vectors describing these columns; one in the context of the
* global array, and one in the local results.
*/
MPI_Datatype vec, localvec;
MPI_Type_vector(blocksize, 1, localsizes[1], MPI_CHAR, &localvec);
MPI_Type_create_resized(localvec, 0, sizeof(char), &localvec);
MPI_Type_commit(&localvec);
MPI_Type_vector(blocksize, 1, globalsizes[1], MPI_CHAR, &vec);
MPI_Type_create_resized(vec, 0, sizeof(char), &vec);
MPI_Type_commit(&vec);
/* The originating process needs to allocate and fill the source array,
* and then define types defining the array chunks to send, and
* fill out senddispls, sendcounts (1) and sendtypes.
*/
if (rank == 0) {
/* create the vector type which will send one column of a "normal" sized-block */
/* then all processors except those in the last row need to get blocksize*vec or (blocksize+1)*vec */
/* will still have to do something to tidy up the last row of values */
/* we need to make the type have extent of 1 char for scattering */
for (int proc=0; proc<size; proc++) {
int row, col;
rowcol(proc, blocks, &row, &col);
sendcounts[proc] = isLastCol(col, blocks) ? blocksize+1 : blocksize;
senddispls[proc] = (row*blocksize*globalsizes[1] + col*blocksize);
}
}
recvcounts = localsizes[1];
MPI_Scatterv(globalptr, sendcounts, senddispls, vec,
&(localdata[0][0]), recvcounts, localvec, 0, MPI_COMM_WORLD);
MPI_Type_free(&localvec);
if (rank == 0)
MPI_Type_free(&vec);
/* now we need to do one more scatter, scattering just the last row of data
* just to the processors on the last row.
* Here we recompute the sendcounts
*/
if (rank == 0) {
for (int proc=0; proc<size; proc++) {
int row, col;
rowcol(proc, blocks, &row, &col);
sendcounts[proc] = 0;
senddispls[proc] = 0;
if ( isLastRow(row,blocks) ) {
sendcounts[proc] = blocksize;
senddispls[proc] = (globalsizes[0]-1)*globalsizes[1]+col*blocksize;
if ( isLastCol(col,blocks) )
sendcounts[proc] += 1;
}
}
}
recvcounts = 0;
if ( isLastRow(myrow, blocks) ) {
recvcounts = blocksize;
if ( isLastCol(mycol, blocks) )
recvcounts++;
}
MPI_Scatterv(globalptr, sendcounts, senddispls, MPI_CHAR,
&(localdata[blocksize][0]), recvcounts, MPI_CHAR, 0, MPI_COMM_WORLD);
}
/* third method: first distribute rows, then columns, each with a single scatterv */
void twophaseRowCol(const int myrow, const int mycol, const int rank, const int size,
const int blocks[2], const int blocksize, const int globalsizes[2], const int localsizes[2],
const char *const globalptr, char **localdata) {
char **rowdata ;
/* create communicators which have processors with the same row or column in them*/
MPI_Comm colComm, rowComm;
MPI_Comm_split(MPI_COMM_WORLD, myrow, rank, &rowComm);
MPI_Comm_split(MPI_COMM_WORLD, mycol, rank, &colComm);
/* first, scatter the array by rows, with the processor in column 0 corresponding to each row
* receiving the data */
if (mycol == 0) {
int sendcounts[ blocks[0] ];
int senddispls[ blocks[0] ];
senddispls[0] = 0;
for (int row=0; row<blocks[0]; row++) {
/* each processor gets blocksize rows, each of size globalsizes[1]... */
sendcounts[row] = blocksize*globalsizes[1];
if (row > 0)
senddispls[row] = senddispls[row-1] + sendcounts[row-1];
}
/* the last processor gets one more */
sendcounts[blocks[0]-1] += globalsizes[1];
/* allocate my rowdata */
rowdata = allocchar2darray( sendcounts[myrow], globalsizes[1] );
/* perform the scatter of rows */
MPI_Scatterv(globalptr, sendcounts, senddispls, MPI_CHAR,
&(rowdata[0][0]), sendcounts[myrow], MPI_CHAR, 0, colComm);
}
/* Now, within each row of processors, we can scatter the columns.
* We can do this as we did in the previous example; create a vector
* (and localvector) type and scatter accordingly */
int locnrows = blocksize;
if ( isLastRow(myrow, blocks) )
locnrows++;
MPI_Datatype vec, localvec;
MPI_Type_vector(locnrows, 1, globalsizes[1], MPI_CHAR, &vec);
MPI_Type_create_resized(vec, 0, sizeof(char), &vec);
MPI_Type_commit(&vec);
MPI_Type_vector(locnrows, 1, localsizes[1], MPI_CHAR, &localvec);
MPI_Type_create_resized(localvec, 0, sizeof(char), &localvec);
MPI_Type_commit(&localvec);
int sendcounts[ blocks[1] ];
int senddispls[ blocks[1] ];
if (mycol == 0) {
for (int col=0; col<blocks[1]; col++) {
sendcounts[col] = isLastCol(col, blocks) ? blocksize+1 : blocksize;
senddispls[col] = col*blocksize;
}
}
char *rowptr = (mycol == 0) ? &(rowdata[0][0]) : NULL;
MPI_Scatterv(rowptr, sendcounts, senddispls, vec,
&(localdata[0][0]), sendcounts[mycol], localvec, 0, rowComm);
MPI_Type_free(&localvec);
MPI_Type_free(&vec);
if (mycol == 0)
freechar2darray(rowdata);
MPI_Comm_free(&rowComm);
MPI_Comm_free(&colComm);
}
int main(int argc, char **argv) {
int rank, size;
int blocks[2] = {0,0};
const int blocksize=3;
int globalsizes[2], localsizes[2];
char **globaldata;
char *globalptr = NULL;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (rank == 0 && argc < 2) {
fprintf(stderr,"Usage: %s method\n Where method is one of: alltoall, twophasevecs, twophaserowcol\n", argv[0]);
MPI_Abort(MPI_COMM_WORLD,1);
}
/* calculate sizes for a 2d grid of processors */
MPI_Dims_create(size, 2, blocks);
int myrow, mycol;
rowcol(rank, blocks, &myrow, &mycol);
/* create array sizes so that last block has 1 too many rows/cols */
globalsizes[0] = blocks[0]*blocksize+1;
globalsizes[1] = blocks[1]*blocksize+1;
if (rank == 0) {
globaldata = allocchar2darray(globalsizes[0], globalsizes[1]);
globalptr = &(globaldata[0][0]);
for (int i=0; i<globalsizes[0]; i++)
for (int j=0; j<globalsizes[1]; j++)
globaldata[i][j] = 'a'+(i*globalsizes[1] + j)%26;
printf("Global array: \n");
printarray(globaldata, globalsizes[0], globalsizes[1]);
}
/* the local chunk we'll be receiving */
localsizes[0] = blocksize; localsizes[1] = blocksize;
if ( isLastRow(myrow,blocks)) localsizes[0]++;
if ( isLastCol(mycol,blocks)) localsizes[1]++;
char **localdata = allocchar2darray(localsizes[0],localsizes[1]);
if (!strcasecmp(argv[1], "alltoall")) {
if (rank == 0) printf("Method - alltoall\n");
alltoall(myrow, mycol, rank, size, blocks, blocksize, globalsizes, localsizes, globalptr, localdata);
} else if (!strcasecmp(argv[1],"twophasevecs")) {
if (rank == 0) printf("Method - two phase, vectors, then cleanup\n");
twophasevecs(myrow, mycol, rank, size, blocks, blocksize, globalsizes, localsizes, globalptr, localdata);
} else {
if (rank == 0) printf("Method - two phase - row, cols\n");
twophaseRowCol(myrow, mycol, rank, size, blocks, blocksize, globalsizes, localsizes, globalptr, localdata);
}
for (int proc=0; proc<size; proc++) {
if (proc == rank) {
printf("\nRank %d:\n", proc);
printarray(localdata, localsizes[0], localsizes[1]);
}
MPI_Barrier(MPI_COMM_WORLD);
}
freechar2darray(localdata);
if (rank == 0)
freechar2darray(globaldata);
MPI_Finalize();
return 0;
}
char **allocchar2darray(int n, int m) {
char **ptrs = malloc(n*sizeof(char *));
ptrs[0] = malloc(n*m*sizeof(char));
for (int i=0; i<n*m; i++)
ptrs[0][i]='.';
for (int i=1; i<n; i++)
ptrs[i] = ptrs[i-1] + m;
return ptrs;
}
void freechar2darray(char **a) {
free(a[0]);
free(a);
}
void printarray(char **data, int n, int m) {
for (int i=0; i<n; i++) {
for (int j=0; j<m; j++)
putchar(data[i][j]);
putchar('\n');
}
}
void rowcol(int rank, const int blocks[2], int *row, int *col) {
*row = rank/blocks[1];
*col = rank % blocks[1];
}
int isLastRow(int row, const int blocks[2]) {
return (row == blocks[0]-1);
}
int isLastCol(int col, const int blocks[2]) {
return (col == blocks[1]-1);
}
int typeIdx(int row, int col, const int blocks[2]) {
int lastrow = (row == blocks[0]-1);
int lastcol = (col == blocks[1]-1);
return lastrow*2 + lastcol;
}