使用其他列的预计增长率扩展面板数据列
Extending a panel data column using projected growth rates from an other column
假设我有截至 2016 年的某个变量的面板数据,并且我预测了该变量在 2017 年和 2018 年的总增长率(1 + 增长率)。我如何将感兴趣的变量扩展到2018 年使用预计总增长率?
这是我拥有的数据示例:
Country Year var g
A 2016 5 1.01
B 2016 6 0.98
C 2016 7 1.05
A 2017 NA 1.06
B 2017 NA 0.97
C 2017 NA 1.09
A 2018 NA 1.04
B 2018 NA 1.02
C 2018 NA 0.91
我想用 g
项目 var
替换 2017 年和 2018 年的 NA。因此,在 2017 年,对于 Country
A
,var
将是 5*1.06=5.3
。
生成的数据框应该是这样的:
Country Year var g
A 2016 5 1.01
B 2016 6 0.98
C 2016 7 1.05
A 2017 5.3 1.06
B 2017 5.82 0.97
C 2017 7.63 1.09
A 2018 5.512 1.04
B 2018 5.9364 1.02
C 2018 6.9433 0.91
试一试:
df <- data.frame(Country = rep(c("A","B","C"), 3), Year = rep(2016:2018, each = 3), var = c(5,6,7,NA,NA,NA,NA,NA,NA), g = c(1.01,0.98,1.05,1.06,0.97,1.09,1.04,1.02,0.91))
x <- split(df, df$Country)
for(l in 1:length(x)){ # list length
for(i in 1:nrow(x[[l]])){ # matrix rows
# because I'm using i + 1, we want to stop if we are on the final i
if(i != nrow(x[[l]])) x[[l]]$var[i+1] <- x[[l]]$var[i] * x[[l]]$g[i+1]
}
}
df2 <- do.call(rbind,x) # recombine the list by row
df2 <- df2[order(df2[,"Year"]),] # order so that it is sorted by year again
rownames(df2) <- NULL # we can remove the names with
df2
#Country Year var g
#1 A 2016 5.0000 1.01
#2 B 2016 6.0000 0.98
#3 C 2016 7.0000 1.05
#4 A 2017 5.3000 1.06
#5 B 2017 5.8200 0.97
#6 C 2017 7.6300 1.09
#7 A 2018 5.5120 1.04
#8 B 2018 5.9364 1.02
#9 C 2018 6.9433 0.91
假设我有截至 2016 年的某个变量的面板数据,并且我预测了该变量在 2017 年和 2018 年的总增长率(1 + 增长率)。我如何将感兴趣的变量扩展到2018 年使用预计总增长率?
这是我拥有的数据示例:
Country Year var g
A 2016 5 1.01
B 2016 6 0.98
C 2016 7 1.05
A 2017 NA 1.06
B 2017 NA 0.97
C 2017 NA 1.09
A 2018 NA 1.04
B 2018 NA 1.02
C 2018 NA 0.91
我想用 g
项目 var
替换 2017 年和 2018 年的 NA。因此,在 2017 年,对于 Country
A
,var
将是 5*1.06=5.3
。
生成的数据框应该是这样的:
Country Year var g
A 2016 5 1.01
B 2016 6 0.98
C 2016 7 1.05
A 2017 5.3 1.06
B 2017 5.82 0.97
C 2017 7.63 1.09
A 2018 5.512 1.04
B 2018 5.9364 1.02
C 2018 6.9433 0.91
试一试:
df <- data.frame(Country = rep(c("A","B","C"), 3), Year = rep(2016:2018, each = 3), var = c(5,6,7,NA,NA,NA,NA,NA,NA), g = c(1.01,0.98,1.05,1.06,0.97,1.09,1.04,1.02,0.91))
x <- split(df, df$Country)
for(l in 1:length(x)){ # list length
for(i in 1:nrow(x[[l]])){ # matrix rows
# because I'm using i + 1, we want to stop if we are on the final i
if(i != nrow(x[[l]])) x[[l]]$var[i+1] <- x[[l]]$var[i] * x[[l]]$g[i+1]
}
}
df2 <- do.call(rbind,x) # recombine the list by row
df2 <- df2[order(df2[,"Year"]),] # order so that it is sorted by year again
rownames(df2) <- NULL # we can remove the names with
df2
#Country Year var g
#1 A 2016 5.0000 1.01
#2 B 2016 6.0000 0.98
#3 C 2016 7.0000 1.05
#4 A 2017 5.3000 1.06
#5 B 2017 5.8200 0.97
#6 C 2017 7.6300 1.09
#7 A 2018 5.5120 1.04
#8 B 2018 5.9364 1.02
#9 C 2018 6.9433 0.91