'Pipeline' 对象在 scikit-learn 中没有属性 'get_feature_names'

'Pipeline' object has no attribute 'get_feature_names' in scikit-learn

我基本上是使用 mini_batch_kmeans 和 kmeans 算法对我的一些文档进行聚类。我只是按照教程是 scikit-learn 网站,下面给出了 link: http://scikit-learn.org/stable/auto_examples/text/document_clustering.html

他们正在使用一些矢量化方法,其中之一是 HashingVectorizer。在 hashingVectorizer 中,他们正在使用 TfidfTransformer() 方法制作管道。

# Perform an IDF normalization on the output of HashingVectorizer
hasher = HashingVectorizer(n_features=opts.n_features,
                               stop_words='english', non_negative=True,
                               norm=None, binary=False)
vectorizer = make_pipeline(hasher, TfidfTransformer())

一旦这样做,我从中得到的矢量化器就没有方法 get_feature_names()。但是因为我将它用于集群,所以我需要使用这个 "get_feature_names()"

来获取 "terms"
terms = vectorizer.get_feature_names()
for i in range(true_k):
    print("Cluster %d:" % i, end='')
    for ind in order_centroids[i, :10]:
        print(' %s' % terms[ind], end='')
    print()

如何解决这个错误?

我的全部代码如下所示:

X_train_vecs, vectorizer = vector_bow.count_tfidf_vectorizer(_contents)
mini_kmeans_batch = MiniBatchKmeansTechnique()
# MiniBatchKmeans without the LSA dimensionality reduction
mini_kmeans_batch.mini_kmeans_technique(number_cluster=8, X_train_vecs=X_train_vecs,
                                                vectorizer=vectorizer, filenames=_filenames, contents=_contents, is_dimension_reduced=False)

使用 tfidf 传输的计数向量。

def count_tfidf_vectorizer(self,contents):
    count_vect = CountVectorizer()
    vectorizer = make_pipeline(count_vect,TfidfTransformer())
    X_train_vecs = vectorizer.fit_transform(contents)
    print("The count of bow : ", X_train_vecs.shape)
    return X_train_vecs, vectorizer

和 mini_batch_kmeans class 如下:

class MiniBatchKmeansTechnique():
    def mini_kmeans_technique(self, number_cluster, X_train_vecs, vectorizer,
                              filenames, contents, svd=None, is_dimension_reduced=True):
        km = MiniBatchKMeans(n_clusters=number_cluster, init='k-means++', max_iter=100, n_init=10,
                         init_size=1000, batch_size=1000, verbose=True, random_state=42)
        print("Clustering sparse data with %s" % km)
        t0 = time()
        km.fit(X_train_vecs)
        print("done in %0.3fs" % (time() - t0))
        print()
        cluster_labels = km.labels_.tolist()
        print("List of the cluster names is : ",cluster_labels)
        data = {'filename':filenames, 'contents':contents, 'cluster_label':cluster_labels}
        frame = pd.DataFrame(data=data, index=[cluster_labels], columns=['filename', 'contents', 'cluster_label'])
        print(frame['cluster_label'].value_counts(sort=True,ascending=False))
        print()
        grouped = frame['cluster_label'].groupby(frame['cluster_label'])
        print(grouped.mean())
        print()
        print("Top Terms Per Cluster :")

        if is_dimension_reduced:
            if svd != None:
                original_space_centroids = svd.inverse_transform(km.cluster_centers_)
                order_centroids = original_space_centroids.argsort()[:, ::-1]
        else:
            order_centroids = km.cluster_centers_.argsort()[:, ::-1]

        terms = vectorizer.get_feature_names()
        for i in range(number_cluster):
            print("Cluster %d:" % i, end=' ')
            for ind in order_centroids[i, :10]:
                print(' %s' % terms[ind], end=',')
            print()
            print("Cluster %d filenames:" % i, end='')
            for file in frame.ix[i]['filename'].values.tolist():
                print(' %s,' % file, end='')
            print()

来自 make_pipeline 文档:

This is a shorthand for the Pipeline constructor; it does not require, and
    does not permit, naming the estimators. Instead, their names will be set
    to the lowercase of their types automatically.

因此,为了访问特征名称,在数据拟合后,您可以:

# Perform an IDF normalization on the output of HashingVectorizer
from sklearn.feature_extraction.text import HashingVectorizer, TfidfVectorizer
from sklearn.pipeline import make_pipeline

hasher = HashingVectorizer(n_features=10,
                           stop_words='english', non_negative=True,
                            norm=None, binary=False)

tfidf = TfidfVectorizer()
vectorizer = make_pipeline(hasher, tfidf)
# ...    
# fit to the data
# ... 

# use the instance's class name to lower 
terms = vectorizer.named_steps[tfidf.__class__.__name__.lower()].get_feature_names()

# or to be more precise, as used in `_name_estimators`:
# terms = vectorizer.named_steps[type(tfidf).__name__.lower()].get_feature_names()
# btw TfidfTransformer and HashingVectorizer do not have get_feature_names afaik

希望对您有所帮助,祝您好运!

编辑:在看到您更新的问题和您所遵循的示例后,@Vivek Kumar 是正确的,此代码 terms = vectorizer.get_feature_names() 不会 运行管道但仅当:

vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features,
                                 min_df=2, stop_words='english',
                                 use_idf=opts.use_idf)

Pipeline 没有 get_feature_names() 方法,因为为 Pipeline 实现此方法并不简单 - 需要考虑所有管道步骤以获取功能名称。请参阅 https://github.com/scikit-learn/scikit-learn/issues/6424, https://github.com/scikit-learn/scikit-learn/issues/6425,等等 - 有很多相关的票证,并多次尝试修复它。

如果您的管道很简单(TfidfVectorizer 后跟 MiniBatchKMeans),那么您可以从 TfidfVectorizer 获取特征名称。

如果你想使用 HashingVectorizer,它会更复杂,因为 HashingVectorizer 在设计上没有提供功能名称。 HashingVectorizer 不存储词汇表,而是使用哈希值——这意味着它可以应用于在线设置,并且它不需要任何 RAM——但代价是你得不到特征名称。

尽管如此,仍然可以从 HashingVectorizer 获取特征名称;为此,您需要将其应用于文档样本,存储哪些哈希值对应于哪些单词,并通过这种方式了解这些哈希值的含义,即特征名称是什么。可能会发生冲突,因此无法 100% 确定特征名称是否正确,但通常这种方法可以正常工作。这种方法在 eli5 library; see http://eli5.readthedocs.io/en/latest/tutorials/sklearn-text.html#debugging-hashingvectorizer for an example. You will have to do something like this, using InvertableHashingVectorizer:

中实现
from eli5.sklearn import InvertableHashingVectorizer
ivec = InvertableHashingVectorizer(vec)  # vec is a HashingVectorizer instance
# X_sample is a sample from contents; you can use the 
# whole contents array, or just e.g. every 10th element
ivec.fit(content_sample)  
hashing_feat_names = ivec.get_feature_names()

然后您可以使用 hashing_feat_names 作为您的特征名称,因为 TfidfTransformer 不会改变输入向量的大小,只会缩放相同的特征。