如何减少 RapidMiner 中的文本尺寸
How to reduce text dimensions in RapidMiner
我在使用 Rapid Miner 减少文本挖掘的特征维度时遇到了挑战。在这一点上,我正在按单词标记处理文本,这会导致一个非常大的维度集,这对于建模和预测来说并不理想。
我怎样才能改进使用其他方法清理数据并只使用相关词的过程?
我试过应用 tfidf,但它删除了目标变量,我无法在模型阶段之前看到它做了什么。
谢谢
Process Documents
运算符有一个修剪选项,通过仔细设置参数,您可以删除常见和罕见的属性。
这里有一个玩具示例来展示它的工作原理。
<?xml version="1.0" encoding="UTF-8"?><process version="7.5.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="7.5.000" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="text:create_document" compatibility="7.4.001" expanded="true" height="68" name="Create Document" width="90" x="179" y="187">
<parameter key="text" value="the cat sat on the mat the dog barked at the man the cow ate the grass the man sat on the grass"/>
</operator>
<operator activated="true" class="text:create_document" compatibility="7.4.001" expanded="true" height="68" name="Create Document (2)" width="90" x="179" y="289">
<parameter key="text" value="the cat sat on the mat the man sat on the grass the rain in spain falls mainly on the plain"/>
</operator>
<operator activated="true" class="text:create_document" compatibility="7.4.001" expanded="true" height="68" name="Create Document (3)" width="90" x="179" y="391">
<parameter key="text" value="the world is round"/>
</operator>
<operator activated="true" class="text:process_documents" compatibility="7.4.001" expanded="true" height="145" name="Process Documents" width="90" x="447" y="187">
<parameter key="vector_creation" value="Term Occurrences"/>
<parameter key="prune_method" value="absolute"/>
<parameter key="prune_above_percent" value="40.0"/>
<parameter key="prune_below_absolute" value="2"/>
<parameter key="prune_above_absolute" value="5"/>
<process expanded="true">
<operator activated="true" class="text:tokenize" compatibility="7.4.001" expanded="true" height="68" name="Tokenize" width="90" x="246" y="34"/>
<connect from_port="document" to_op="Tokenize" to_port="document"/>
<connect from_op="Tokenize" from_port="document" to_port="document 1"/>
<portSpacing port="source_document" spacing="0"/>
<portSpacing port="sink_document 1" spacing="0"/>
<portSpacing port="sink_document 2" spacing="0"/>
</process>
</operator>
<connect from_op="Create Document" from_port="output" to_op="Process Documents" to_port="documents 1"/>
<connect from_op="Create Document (2)" from_port="output" to_op="Process Documents" to_port="documents 2"/>
<connect from_op="Create Document (3)" from_port="output" to_op="Process Documents" to_port="documents 3"/>
<connect from_op="Process Documents" from_port="example set" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>
需要一些小心才能使其恰到好处,但希望这能帮助您入门。
我在使用 Rapid Miner 减少文本挖掘的特征维度时遇到了挑战。在这一点上,我正在按单词标记处理文本,这会导致一个非常大的维度集,这对于建模和预测来说并不理想。 我怎样才能改进使用其他方法清理数据并只使用相关词的过程?
我试过应用 tfidf,但它删除了目标变量,我无法在模型阶段之前看到它做了什么。
谢谢
Process Documents
运算符有一个修剪选项,通过仔细设置参数,您可以删除常见和罕见的属性。
这里有一个玩具示例来展示它的工作原理。
<?xml version="1.0" encoding="UTF-8"?><process version="7.5.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="7.5.000" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="text:create_document" compatibility="7.4.001" expanded="true" height="68" name="Create Document" width="90" x="179" y="187">
<parameter key="text" value="the cat sat on the mat the dog barked at the man the cow ate the grass the man sat on the grass"/>
</operator>
<operator activated="true" class="text:create_document" compatibility="7.4.001" expanded="true" height="68" name="Create Document (2)" width="90" x="179" y="289">
<parameter key="text" value="the cat sat on the mat the man sat on the grass the rain in spain falls mainly on the plain"/>
</operator>
<operator activated="true" class="text:create_document" compatibility="7.4.001" expanded="true" height="68" name="Create Document (3)" width="90" x="179" y="391">
<parameter key="text" value="the world is round"/>
</operator>
<operator activated="true" class="text:process_documents" compatibility="7.4.001" expanded="true" height="145" name="Process Documents" width="90" x="447" y="187">
<parameter key="vector_creation" value="Term Occurrences"/>
<parameter key="prune_method" value="absolute"/>
<parameter key="prune_above_percent" value="40.0"/>
<parameter key="prune_below_absolute" value="2"/>
<parameter key="prune_above_absolute" value="5"/>
<process expanded="true">
<operator activated="true" class="text:tokenize" compatibility="7.4.001" expanded="true" height="68" name="Tokenize" width="90" x="246" y="34"/>
<connect from_port="document" to_op="Tokenize" to_port="document"/>
<connect from_op="Tokenize" from_port="document" to_port="document 1"/>
<portSpacing port="source_document" spacing="0"/>
<portSpacing port="sink_document 1" spacing="0"/>
<portSpacing port="sink_document 2" spacing="0"/>
</process>
</operator>
<connect from_op="Create Document" from_port="output" to_op="Process Documents" to_port="documents 1"/>
<connect from_op="Create Document (2)" from_port="output" to_op="Process Documents" to_port="documents 2"/>
<connect from_op="Create Document (3)" from_port="output" to_op="Process Documents" to_port="documents 3"/>
<connect from_op="Process Documents" from_port="example set" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>
需要一些小心才能使其恰到好处,但希望这能帮助您入门。