fft 除法用于快速多项式除法

fft division for fast polynomial division

我正在尝试使用快速傅里叶变换 (fft) 实现快速多项式除法。

这是我目前得到的:

from numpy.fft import fft, ifft
def fft_div(C1, C2):
    # fft expects right-most for significant coefficients
    C1 = C1[::-1]
    C2 = C2[::-1]
    d = len(C1)+len(C2)-1
    c1 = fft(list(C1) + [0] * (d-len(C1)))
    c2 = fft(list(C2) + [0] * (d-len(C2)))
    res = list(ifft(c1-c2)[:d].real)
    # Reorder back to left-most and round to integer
    return [int(round(x)) for x in res[::-1]]

这适用于相同长度的多项式,但如果长度不同则结果是错误的(我以 RosettaCode's extended_synthetic_division() 函数为基准):

# Most signficant coefficient is left
N = [1, -11, 0, -22, 1]
D = [1, -3, 0, 1, 2]
# OK case, same length for both polynomials
fft_div(N, D)
>> [0, 0, 0, 0, 0, -8, 0, -23, -1]
extended_synthetic_division(N, D)
>> ([1], [-8, 0, -23, -1])

# NOT OK case, D is longer than N (also happens if shorter)
D = [1, -3, 0, 1, 2, 20]
fft_div(N, D)
>> [0, 0, 0, 0, -1, 4, -11, -1, -24, -19]
extended_synthetic_division(N, D)
>> ([], [1, -11, 0, -22, 1])

奇怪的是,看起来很接近,但还是有点偏离。我做错了什么?换句话说:如何将快速多项式除法(使用 FFT)推广到不同大小的向量

如果你能告诉我如何计算除法(目前我只有余数)。

这是在这些 lecture notes 中找到的快速多项式除法算法的直接实现。

除法基于被除数与除数倒数的 fast/FFT 乘积。我下面的实现严格遵循被证明具有 O(n*log(n)) 时间复杂度的算法(对于具有相同数量级的多项式),但它的编写重点是可读性,而不是效率。

from math import ceil, log
from numpy.fft import fft, ifft

def poly_deg(p):
    return len(p) - 1


def poly_scale(p, n):
    """Multiply polynomial ``p(x)`` with ``x^n``.
    If n is negative, poly ``p(x)`` is divided with ``x^n``, and remainder is
    discarded (truncated division).
    """
    if n >= 0:
        return list(p) + [0] * n
    else:
        return list(p)[:n]


def poly_scalar_mul(a, p):
    """Multiply polynomial ``p(x)`` with scalar (constant) ``a``."""
    return [a*pi for pi in p]


def poly_extend(p, d):
    """Extend list ``p`` representing a polynomial ``p(x)`` to
    match polynomials of degree ``d-1``.
    """
    return [0] * (d-len(p)) + list(p)


def poly_norm(p):
    """Normalize the polynomial ``p(x)`` to have a non-zero most significant
    coefficient.
    """
    for i,a in enumerate(p):
        if a != 0:
            return p[i:]
    return []


def poly_add(u, v):
    """Add polynomials ``u(x)`` and ``v(x)``."""
    d = max(len(u), len(v))
    return [a+b for a,b in zip(poly_extend(u, d), poly_extend(v, d))]


def poly_sub(u, v):
    """Subtract polynomials ``u(x)`` and ``v(x)``."""
    d = max(len(u), len(v))
    return poly_norm([a-b for a,b in zip(poly_extend(u, d), poly_extend(v, d))])


def poly_mul(u, v):
    """Multiply polynomials ``u(x)`` and ``v(x)`` with FFT."""
    if not u or not v:
        return []
    d = poly_deg(u) + poly_deg(v) + 1
    U = fft(poly_extend(u, d)[::-1])
    V = fft(poly_extend(v, d)[::-1])
    res = list(ifft(U*V).real)
    return [int(round(x)) for x in res[::-1]]


def poly_recip(p):
    """Calculate the reciprocal of polynomial ``p(x)`` with degree ``k-1``,
    defined as: ``x^(2k-2) / p(x)``, where ``k`` is a power of 2.
    """
    k = poly_deg(p) + 1
    assert k>0 and p[0] != 0 and 2**round(log(k,2)) == k

    if k == 1:
        return [1 / p[0]]

    q = poly_recip(p[:k/2])
    r = poly_sub(poly_scale(poly_scalar_mul(2, q), 3*k/2-2),
                 poly_mul(poly_mul(q, q), p))

    return poly_scale(r, -k+2)


def poly_divmod(u, v):
    """Fast polynomial division ``u(x)`` / ``v(x)`` of polynomials with degrees
    m and n. Time complexity is ``O(n*log(n))`` if ``m`` is of the same order
    as ``n``.
    """
    if not u or not v:
        return []
    m = poly_deg(u)
    n = poly_deg(v)

    # ensure deg(v) is one less than some power of 2
    # by extending v -> ve, u -> ue (mult by x^nd)
    nd = int(2**ceil(log(n+1, 2))) - 1 - n
    ue = poly_scale(u, nd)
    ve = poly_scale(v, nd)
    me = m + nd
    ne = n + nd

    s = poly_recip(ve)
    q = poly_scale(poly_mul(ue, s), -2*ne)

    # handle the case when m>2n
    if me > 2*ne:
        # t = x^2n - s*v
        t = poly_sub(poly_scale([1], 2*ne), poly_mul(s, ve))
        q2, r2 = poly_divmod(poly_scale(poly_mul(ue, t), -2*ne), ve)
        q = poly_add(q, q2)

    # remainder, r = u - v*q
    r = poly_sub(u, poly_mul(v, q))

    return q, r

poly_divmod(u, v) 函数 returns 多项式 uv(quotient, remainder) 元组(类似于 Python 的标准 divmod 表示数字)。

例如:

>>> print poly_divmod([1,0,-1], [1,-1])
([1, 1], [])
>>> print poly_divmod([3,-5,10,8], [1,2,-3])
([3, -11], [41, -25])
>>> print poly_divmod([1, -11, 0, -22, 1], [1, -3, 0, 1, 2])
([1], [-8, 0, -23, -1])
>>> print poly_divmod([1, -11, 0, -22, 1], [1, -3, 0, 1, 2, 20])
([], [1, -11, 0, -22, 1])

即:

  • (x^2 - 1) / (x - 1) == x + 1
  • (2x^3 - 5x^2 + 10x + 8) / (x^2 + 2x -3) == 3x - 11,余数41x - 25
  • 等(最后两个例子是你的。)