Tensorflow:使用输入管道 (.csv) 作为训练字典

Tensorflow: using an input-pipeline (.csv) as a dictionary for training

我正在尝试在 .csv 数据集(5008 列,533 行)上训练模型。 我正在使用文本阅读器将数据解析为两个张量,一个包含要在 [example] 上训练的数据,另一个包含正确的标签 [label]:

def read_my_file_format(filename_queue):
    reader = tf.TextLineReader()
    key, record_string = reader.read(filename_queue)
    record_defaults = [[0.5] for row in range(5008)]

    #Left out most of the columns for obvious reasons
    col1, col2, col3, ..., col5008 = tf.decode_csv(record_string, record_defaults=record_defaults)
    example = tf.stack([col1, col2, col3, ..., col5007])
    label = col5008
    return example, label

def input_pipeline(filenames, batch_size, num_epochs=None):
    filename_queue = tf.train.string_input_producer(filenames, num_epochs=num_epochs, shuffle=True)
    example, label = read_my_file_format(filename_queue)
    min_after_dequeue = 10000
    capacity = min_after_dequeue + 3 * batch_size
    example_batch, label_batch = tf.train.shuffle_batch([example, label], batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue)
    return example_batch, label_batch

这部分在执行类似以下内容时有效:

with tf.Session() as sess:
    ex_b, l_b = input_pipeline(["Tensorflow_vectors.csv"], 10, 1)
    print("Test: ",ex_b)

我的结果是Test: Tensor("shuffle_batch:0", shape=(10, 5007), dtype=float32)

到目前为止,这对我来说还不错。接下来,我创建了一个包含两个隐藏层(分别为 512 和 256 个节点)的简单模型。当我尝试训练模型时出现问题的地方:

batch_x, batch_y = input_pipeline(["Tensorflow_vectors.csv"], batch_size)
_, cost = sess.run([optimizer, cost], feed_dict={x: batch_x.eval(), y: batch_y.eval()})

我将此方法基于 this example that uses the MNIST database。 但是,当我执行此操作时,即使我只是使用 batch_size = 1,Tensorflow 也会挂起。如果我省略了应该从张量中获取实际数据的 .eval() 函数,我会得到以下响应:

TypeError: The value of a feed cannot be a tf.Tensor object. Acceptable feed values include Python scalars, strings, lists, or numpy ndarrays.

现在我明白了,但是我不明白为什么当我包含 .eval() 函数时程序会挂起,而且我不知道在哪里可以找到有关此问题的任何信息。

编辑:我包含了整个脚本的最新版本 here。即使我实施了(据我所知)vijay m

提供的解决方案,程序仍然挂起

如错误所述,您正在尝试将张量提供给 feed_dict。您已经定义了一个 input_pipeline 队列,但不能将其作为 feed_dict 传递。将数据传递给模型和训练的正确方法如下代码所示:

 # A queue which will return batches of inputs 
 batch_x, batch_y = input_pipeline(["Tensorflow_vectors.csv"], batch_size)

 # Feed it to your neural network model: 
 # Every time this is called, it will pull data from the queue.
 logits = neural_network(batch_x, batch_y, ...)

 # Define cost and optimizer
 cost = ...
 optimizer = ...

 # Evaluate the graph on a session:
 with tf.Session() as sess:
    init_op = ...
    sess.run(init_op)

    # Start the queues
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Loop through data and train
    for ( loop through steps ):
        _, cost = sess.run([optimizer, cost])

    coord.request_stop()
    coord.join(threads)