Python Negamax 算法

Python Negamax Algorithm

我有尽可能简单的 negamax 算法,用于评估 Tic Tac Toe 中的位置。游戏状态在 numpy 中存储为一个数组,X 的棋子用 1 表示,O 的棋子用 4 表示。

我刚才正在测试这个,发现:

a = np.zeros(9).reshape(3,3)
negaMax(a, 6, 1) # Returned zero as it should
negaMax(a, 7, 1) # Returns 100

这意味着我的算法认为它已经找到了让 X 在 Tic Tac Toe 游戏中赢得七层的方法,这对于正常的游戏来说显然是不可能的。我无法弄清楚如何让它打印出它找到的最佳动作,所以我在调试它时遇到了真正的麻烦。我做错了什么?

def winCheck(state):
        """Takes a position, and returns the outcome of that game"""
        # Sums which correspond to a line across a column
        winNums = list(state.sum(axis=0))
        # Sums which correspond to a line across a row
        winNums.extend(list(state.sum(axis=1)))
        # Sums which correspond to a line across the main diagonal
        winNums.append(state.trace())
        # Sums which correspond to a line across the off diagonal
        winNums.append(np.flipud(state).trace())

        if Square.m in winNums:
                return 'X'
        elif (Square.m**2 + Square.m) in winNums:
                return 'O'
        elif np.count_nonzero(state) == Square.m**2:
                return 'D'
        else:
                return None

def moveFind(state):
        """Takes a position as an nparray and determines the legal moves"""
        moveChoices = []

        # Iterate over state, to determine which squares are empty
        it = np.nditer(state, flags=['multi_index'])
        while not it.finished:
            if it[0] == 0:
                    moveChoices.append(it.multi_index)
            it.iternext()
        return moveChoices

def moveSim(state, move, player):
        """Create the state of the player having moved without interfering with the board"""
        simState = state.copy()
        if player == 1:
                simState[move] = 1
        else:
                simState[move] = gamecfg.n + 1
        return simState

def positionScore(state):
        """The game is either won or lost"""
        if winCheck(state) == 'X':
                return 100
        elif winCheck(state) == 'O':
                return -100
        else:
                return 0

def negaMax(state, depth, colour):
        """Recursively find the best move via a negamax search"""
        if depth == 0:
                return positionScore(state) * colour

        highScore = -100

        moveList = moveFind(state)
        for move in moveList:
                score = -negaMax(moveSim(state, move, colour), depth -1, colour * -1)
                highScore = max(score, highScore)

        return highScore

当一行 3 个符号出现时,您的代码不会认为游戏停止。

这意味着它正在玩井字游戏的变体,其中即使在 O 已经连成 3 之后,如果他连成 3,X 也会获胜。

对于这个变体,程序正确地发现 X 有可能总是赢!

(我在我制作的国际象棋程序中遇到了同样的情况,如果它能稍后将死,计算机很乐意牺牲它的国王......)