"required from here" 使用 Eigen 库时

"required from here" when using Eigen library

我正在使用 Eigen 库在 Eclipse C++ 中实现一些控制算法。例如,当我想计算矩阵的特征值时,我会收到 "required from here" 警告,作为代码行旁边的感叹号。我也不知道怎么解决。

这是我的 main.cpp 文件:

#include <iostream>
#include "System.h"
#include "ControllerCode2.h"

using namespace std;


int main(){

    int n = 3;   // # of states
    int m = 1;   // # of inputs
    int l = 1;   // # of outputs

    MatrixXd A(n, n), B(n,m), C(l,n), D(l,m), Q(n,n), R(m,m), Qe(n,n), Re(m,m);

    A << 0,  1,  0,
         0,  0,  1,
         0, -2, -3;

    B << 0,
         0,
         1;

    C << 1, 0, 0;

    D << 0;

    MatrixXd C_trans = C.transpose();
    Q = C_trans * C;
    R =  MatrixXd::Identity(m, m); // initially

    MatrixXd B_trans = B.transpose();
    Qe = B * B_trans;
    Re =  MatrixXd::Identity(m, m); // initially

    System sys = System(A, B, C, D);

    sys.set_covariance_matrices(R, Q);
    sys.set_noise_covariance_matrices(Re, Qe);
    schur_eigen_test(sys);

    return 5;
}

现在,ControllerCode2.cpp代码:

#include "ControllerCode2.h"

MatrixXd U11;
MatrixXd U21;

void schur_eigen_test( System G ){
    /****** Constructing the Hamiltonian Matrix ******/
    int n = G.A.rows();
    MatrixXd H(2*n, 2*n);          // the Hamiltonian matrix has the dimensions of 2n*2n where n is the number of states
    H.block(0,0,n,n)      = G.A;
    H.block(0,n,n,n)      = -1 * G.B * G.R.inverse() * G.B.transpose();
    H.block(n,0,n,n)      = -1 * G.Q;
    H.block(n,n,n,n)      = -1 * G.A.transpose();

    /****** Performing a real Schur decomposition on the square Hamiltonian matrix ******/
    RealSchur<MatrixXd> schur(H);
    MatrixXd U = schur.matrixU(); //The orthogonal matrix U
    MatrixXd T = schur.matrixT(); //The quasi-triangular matrix T


    /****** Find the eigenvalues and eigenvectors of the Hamiltonian matrix ******/
    EigenSolver<MatrixXd> H_eigen;        // create an EigenSolver Matrix
    H_eigen.compute(H, false);            // compute the eigenvalues ./and eigenvectors of matrix H
    MatrixXd H_eigenval = H_eigen.eigenvalues();
    //              //MatrixXd H_eigenvec = H_eigen.eigenvectors();


    /****** Select the eigenvectors (U11, U21) corresponding to the stable (with -ve real part) eigenvalues ******/
    U11 = U.block(0,0,n,n);
    U21 = U.block(n,0,n,n);

    /****** Calculate F ******/
    MatrixXd F = -1 * G.R.inverse() * G.B.transpose() * U21 * U11.inverse(); // transposeInPlace or transpose??

    //////// Extra: for output
    cout << endl << "H = " << endl << H << endl;
    cout << endl << "U schur(H) " << endl << U << endl;
    cout << endl << "T schur(H) " << endl << T << endl;
    cout << endl << "U*T*U.transpose() " << endl << U * T * U.transpose();

    //      cout << endl << "U.transpose() - U.inverse() " << endl << U.transpose() - U.inverse(); // = which proves that U is orthogonal, i.e. U.transpose() = U.inverse()
    //      EigenSolver<MatrixXd> H_eigen;        // create an EigenSolver Matrix
    //      H_eigen.compute(H, false);            // compute the eigenvalues and eigenvectors of matrix H
    //      MatrixXd H_eigenval = H_eigen.eigenvalues();
    //      cout << endl << "eigenvalues of H = " << endl << H_eigenval << endl;
}

我在这一行旁边收到警告:

MatrixXd H_eigenval = H_eigen.eigenvalues();

我的ControllerCode2.h代码:

#ifndef CONTROLLERCODE_H_
#define CONTROLLERCODE_H_

#include "System.h"

    void schur_eigen_test( System );

//};

#endif /* CONTROLLERCODE_H_ */

System.h代码:

// include guard
#ifndef SYSTEM_H_
#define SYSTEM_H_

#include <Eigen/Dense>
#include <iostream>
#include <Eigen/Eigenvalues>
#include <iostream>

using namespace Eigen;
using namespace std;
using Eigen::MatrixXd;


class System {

public:

    MatrixXd A;
    MatrixXd B;
    MatrixXd C;
    MatrixXd D;
    MatrixXd Q;
    MatrixXd R;
    MatrixXd Re;
    MatrixXd Qe;


    System(MatrixXd a, MatrixXd b, MatrixXd c, MatrixXd d){
        A = a;
        B = b;
        C = c;
        D = d;
        //cout << A << endl << B << endl << C << endl;
    };

    void set_covariance_matrices(MatrixXd r, MatrixXd q){
        R = r;
        Q = q;
        //cout << R << endl << Q << endl;
    }

    void set_noise_covariance_matrices(MatrixXd re, MatrixXd qe){
        Re = re;
        Qe = qe;
        //cout << Re << endl << Qe << endl;
    }


    virtual ~System();

    // this function receives the 4 state space matrices and returns one plant matrix G
    MatrixXd setContSys(MatrixXd a, MatrixXd b, MatrixXd c, MatrixXd d);

};

#endif /* SYSTEM_H_ */

最后这是控制台中显示的结果:

15:12:51 **** Incremental Build of configuration Debug for project Controller ****
Info: Internal Builder is used for build
g++ "-IC:\Users\Alsharif\eigen" -O0 -g3 -Wall -c -fmessage-length=0 -o ControllerCode2.o "..\ControllerCode2.cpp" 
In file included from C:\Users\Alsharif\eigen/Eigen/Core:285:0,
                 from C:\Users\Alsharif\eigen/Eigen/Dense:1,
                 from ..\System.h:12,
                 from ..\ControllerCode2.h:11,
                 from ..\ControllerCode2.cpp:8:
C:\Users\Alsharif\eigen/Eigen/src/Core/Matrix.h: In instantiation of 'Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::MatrixBase<OtherDerived>&) [with OtherDerived = Eigen::Matrix<std::complex<double>, -1, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]':
..\ControllerCode2.cpp:220:45:   required from here
C:\Users\Alsharif\eigen/Eigen/src/Core/util/StaticAssert.h:115:9: error: 'YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY' is not a member of 'Eigen::internal::static_assertion<false>'
         if (Eigen::internal::static_assertion<static_cast<bool>(CONDITION)>::MSG) {}
         ^
C:\Users\Alsharif\eigen/Eigen/src/Core/Matrix.h:326:7: note: in expansion of macro 'EIGEN_STATIC_ASSERT'
       EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
       ^

15:12:55 Build Finished (took 4s.567ms)

所以你得到了一个静态断言:YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY

我不是 Eigen 方面的专家,但我看到 eigenvalues() returns const EigenvalueType& 是一种不同的矩阵类型,而不是您用来实例化 EigenSolver 的矩阵类型(即 MatrixXd你的情况)。

所以你应该使用正确的类型,或者明确地转换矩阵,这就是静态断言所说的。