Sparklyr - 小数精度 8 超过最大精度 7
Sparklyr - Decimal precision 8 exceeds max precision 7
我正在尝试使用 spark_read_csv 将一个大数据库复制到 Spark 中,但我收到以下错误输出:
Error: org.apache.spark.SparkException: Job aborted due to stage
failure: Task 0 in stage 16.0 failed 4 times, most recent failure:
Lost task 0.3 in stage 16.0 (TID 176, 10.1.2.235):
java.lang.IllegalArgumentException: requirement failed: Decimal
precision 8 exceeds max precision 7
data_tbl <- spark_read_csv(sc, "data", "D:/base_csv", delimiter = "|", overwrite = TRUE)
这是一个大数据集,大约有 580 万条记录,我的数据集有 Int
、num
和 chr
.
类型的数据
我认为您有几个选项,具体取决于您使用的 spark 版本
Spark >=1.6.1
从这里开始:https://docs.databricks.com/spark/latest/sparkr/functions/read.df.html
看来,您可以专门指定您的架构以强制它使用双打
csvSchema <- structType(structField("carat", "double"), structField("color", "string"))
diamondsLoadWithSchema<- read.df("/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv",
source = "csv", header="true", schema = csvSchema)
Spark < 1.6.1
考虑 test.csv
1,a,4.1234567890
2,b,9.0987654321
您可以轻松地提高效率,但我认为您已经掌握了要点
linesplit <- function(x){
tmp <- strsplit(x,",")
return ( tmp)
}
lineconvert <- function(x){
arow <- x[[1]]
converted <- list(as.integer(arow[1]), as.character(arow[2]),as.double(arow[3]))
return (converted)
}
rdd <- SparkR:::textFile(sc,'/path/to/test.csv')
lnspl <- SparkR:::map(rdd, linesplit)
ll2 <- SparkR:::map(lnspl,lineconvert)
ddf <- createDataFrame(sqlContext,ll2)
head(ddf)
_1 _2 _3
1 1 a 4.1234567890
2 2 b 9.0987654321
注意:SparkR::: 方法是私有的是有原因的,文档说 'be careful when you use this'
我正在尝试使用 spark_read_csv 将一个大数据库复制到 Spark 中,但我收到以下错误输出:
Error: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 16.0 failed 4 times, most recent failure: Lost task 0.3 in stage 16.0 (TID 176, 10.1.2.235): java.lang.IllegalArgumentException: requirement failed: Decimal precision 8 exceeds max precision 7
data_tbl <- spark_read_csv(sc, "data", "D:/base_csv", delimiter = "|", overwrite = TRUE)
这是一个大数据集,大约有 580 万条记录,我的数据集有 Int
、num
和 chr
.
我认为您有几个选项,具体取决于您使用的 spark 版本
Spark >=1.6.1
从这里开始:https://docs.databricks.com/spark/latest/sparkr/functions/read.df.html 看来,您可以专门指定您的架构以强制它使用双打
csvSchema <- structType(structField("carat", "double"), structField("color", "string"))
diamondsLoadWithSchema<- read.df("/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv",
source = "csv", header="true", schema = csvSchema)
Spark < 1.6.1 考虑 test.csv
1,a,4.1234567890
2,b,9.0987654321
您可以轻松地提高效率,但我认为您已经掌握了要点
linesplit <- function(x){
tmp <- strsplit(x,",")
return ( tmp)
}
lineconvert <- function(x){
arow <- x[[1]]
converted <- list(as.integer(arow[1]), as.character(arow[2]),as.double(arow[3]))
return (converted)
}
rdd <- SparkR:::textFile(sc,'/path/to/test.csv')
lnspl <- SparkR:::map(rdd, linesplit)
ll2 <- SparkR:::map(lnspl,lineconvert)
ddf <- createDataFrame(sqlContext,ll2)
head(ddf)
_1 _2 _3
1 1 a 4.1234567890
2 2 b 9.0987654321
注意:SparkR::: 方法是私有的是有原因的,文档说 'be careful when you use this'