如何在火炬张量中交换两行?

How two rows can be swapped in a torch tensor?

var = [[0, 1, -4, 8],
       [2, -3, 2, 1],
       [5, -8, 7, 1]]

var = torch.Tensor(var)

这里,var 是一个 3 x 4 (2d) 张量。如何交换第一行和第二行以获得以下二维张量?

2, -3, 2, 1 
0, 1, -4, 8
5, -8, 7, 1

生成你想要的排列索引:

index = torch.LongTensor([1,0,2])

应用排列:

var[index] = var

不起作用,因为某些维度在复制之前会被覆盖:

>>> var = [[0, 1, -4, 8],
       [2, -3, 2, 1],
       [5, -8, 7, 1]]
>>> x = torch.tensor(var)
>>> index = torch.LongTensor([1, 0, 2])
>>> x[index] = x
>>> x
tensor([[ 0,  1, -4,  8],
        [ 0,  1, -4,  8],
        [ 5, -8,  7,  1]])

对我来说,创建一个新的张量(具有单独的底层存储)来保存结果就足够了:

>>> x = torch.tensor(var)
>>> index = torch.LongTensor([1, 0, 2])
>>> y = torch.zeros_like(x)
>>> y[index] = x

或者,您可以使用 index_copy_ (following this explanation in discuss.pytorch.org),尽管目前我看不出这两种方式有什么优势。

正如其他答案所建议的那样,您的排列索引本身应该是张量,但这不是必需的。您可以像这样交换第一行和第二行:

>>> var
tensor([[ 0,  1, -4,  8],
        [ 2, -3,  2,  1],
        [ 5, -8,  7,  1]])

>>> var[[0, 1]] = var[[1, 0]]

>>> var
tensor([[ 2, -3,  2,  1],
        [ 0,  1, -4,  8],
        [ 5, -8,  7,  1]])

var 可以是 NumPy 数组或 PyTorch 张量。

您可以为此使用 index_select

>>> idx = torch.LongTensor([1,0,2])
>>> var.index_select(0, idx)

tensor([[ 2, -3,  2,  1],
        [ 0,  1, -4,  8],
        [ 5, -8,  7,  1]])