在 matlab 中绘制光分布曲线的 2d 和 3d c 平面
plot the 2d and 3d c-planes of a light distribution curve in matlab
我想绘制分别描述 2D 和 3D 光源光分布曲线 (ldc) 的 C 平面 space。通常制造商以极坐标提供 ldc 的详细信息。示例如下:
连同图(红线solid/dashed代表C平面)
上面的二维图可以在模拟软件中很好地绘制出来,如下图所示:
现在,如果可能的话,我也想在 matlab 中绘制相同的 graphs/plots。但是,我不确定该怎么做。对于二维图,我查看了 polarplot() 函数,但我不确定我的输入应该基于我的矩阵。关于 3D 情节,完全不知道我如何获得 3D 情节 space。因此,如果有人可以向我提供一些提示或解决方案,那将非常有帮助。以下是上述矩阵的值,以防有人想用它进行试验。
非常感谢。
更新:
Ok绘制二维极坐标图可以通过以下代码实现:
ldc = [426.0060 426.0060 426.0060 426.0060 426.0060 426.0060 426.0060
424.7540 425.0980 425.5810 425.9940 425.6490 425.1670 424.7540
421.8600 422.2040 422.7550 423.1690 422.6860 422.2040 421.8600
415.5200 416.0020 416.1400 416.8980 416.6910 416.2780 415.7960
408.6290 406.9060 407.0440 408.0090 409.0420 407.3890 406.5620
394.1580 394.2960 394.5030 395.1920 395.0540 394.5720 394.5720
374.5880 375.8290 376.9310 376.6550 374.6570 376.3800 377.4820
349.7810 351.3660 352.8130 351.9170 350.7460 352.1930 353.9150
317.8070 316.2910 318.2210 316.2910 316.8420 317.1870 319.8750
267.2280 269.4330 264.4720 267.9170 267.9170 269.6400 266.1260
200.4280 162.1010 174.1260 163.2380 199.5320 163.8650 174.8770
111.4940 118.7160 150.0280 118.3780 112.6450 116.1870 151.6540
73.5810 78.4390 99.5180 80.3960 75.7450 78.4250 100.4280
49.7660 69.2120 54.2240 71.2930 52.1980 71.8860 56.8360
35.5290 49.5180 46.4930 48.3810 35.8390 47.2780 48.2220
34.3720 37.9410 35.3290 38.5750 33.9930 39.9950 35.4050
24.1730 24.9380 28.9690 25.8750 24.7800 24.6350 28.5140
14.3050 15.9870 19.6670 16.4830 15.1460 15.9450 19.7770
6.0920 6.5390 7.0420 7.2350 6.9940 6.8220 6.6840
4.7550 4.9550 5.2780 5.2160 5.2090 5.4780 5.6640
3.8590 3.8520 3.8930 3.9000 3.8870 4.3210 4.4380
3.1150 3.1420 2.9350 2.8530 3.0870 3.4660 3.5970
2.8670 2.6670 2.4740 2.3500 2.5700 2.9290 3.1700
2.4120 2.4050 2.3360 2.0330 2.3500 2.6050 2.7840
1.6540 1.6670 1.9090 1.8880 1.7300 1.5920 1.6810
1.1300 1.1990 1.2680 1.4880 1.2270 1.1580 1.1300
1.0470 1.0400 1.0400 1.1440 1.0750 1.0540 1.0470
1.1300 1.1640 1.2060 1.1850 1.2130 1.1850 1.1710
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0];
color = 'r';
line = '-';
% plotting only the first and the last C-planes, i.e. 0 and 90 degrees respectively
for i = 1:6:size(ldc,2)
polarplot(degtorad(theta),ldc(:,i), 'Color', color, 'LineStyle', line, 'LineWidth', 1.5)
hold on
polarplot(-degtorad(theta),ldc(:,i), 'Color' ,color, 'LineStyle', line, 'LineWidth', 1.5)
line = ':';
end
ax = gca;
ax.ThetaZeroLocation = 'bottom';
ax.RAxisLocation = 0;
ax.ThetaTickLabel = {'0'; '30'; '60'; '90'; '120'; '150'; '180'; '150'; '120'; '90'; '60'; '30';};
我还没有尝试过,但是您可以使用 pol2cart
, then add the third dimension and use fill3
渲染表面,将您的极坐标转换为笛卡尔坐标。
好吧,我拖延了,在这里实现:
% range of angles
angles = 0:0.01:(2*pi);
% light intensity example (insert values from table)
r = 1 + sin(angles);
% convert to cartesian coordinates
[p1, p2] = pol2cart(angles, r);
% plot on x-axis (x=0)
X = zeros(size(p1));
Y = p1;
Z = p2;
C = ones(size(Z)); % color input needed
fill3(X,Y,Z,C)
hold on
% plot on y-axis (y=0)
X = p1;
Y = zeros(size(p1));
Z = p2;
C = ones(size(Z))+1;
fill3(p1,zeros(size(p1)),p2,C)
xlabel('x')
ylabel('y')
zlabel('z')
grid on
对于您的特定数据集,您可以执行以下操作
% angles around x-axis, need to turn by 90 degree right pol2cart output
anglesX = (0:5:360)/180*pi+pi/2;
% angles around z-axis
anglesZ = 0:15:90;
% loop over columns
for i = 1:size(ldc,2)
% you need to create a closed contour for fill3
ldcJoined = [ldc(:,i);ldc((end-1):-1:1,i)];
% plot for positive and negative angle around z, i as color-index
plotPlane(anglesX, ldcJoined, anglesZ(i), i)
hold on
plotPlane(anglesX, ldcJoined, -anglesZ(i), i)
end
xlabel('x')
ylabel('y')
zlabel('z')
function [] = plotPlane(anglesX, r, angleZ, c)
% convert to cartesian coordinates
[p1, p2] = pol2cart(anglesX, r');
% plot on x-axis (x=0)
X = zeros(size(p1));
Y = p1;
Z = p2;
C = ones(size(Z)) .* c; % color input needed, you could e.g. C=sin(angles);
h = fill3(X,Y,Z,C);
rotate(h, [0,0,1], angleZ)
end
给出
我想绘制分别描述 2D 和 3D 光源光分布曲线 (ldc) 的 C 平面 space。通常制造商以极坐标提供 ldc 的详细信息。示例如下:
连同图(红线solid/dashed代表C平面)
上面的二维图可以在模拟软件中很好地绘制出来,如下图所示:
现在,如果可能的话,我也想在 matlab 中绘制相同的 graphs/plots。但是,我不确定该怎么做。对于二维图,我查看了 polarplot() 函数,但我不确定我的输入应该基于我的矩阵。关于 3D 情节,完全不知道我如何获得 3D 情节 space。因此,如果有人可以向我提供一些提示或解决方案,那将非常有帮助。以下是上述矩阵的值,以防有人想用它进行试验。
非常感谢。
更新:
Ok绘制二维极坐标图可以通过以下代码实现:
ldc = [426.0060 426.0060 426.0060 426.0060 426.0060 426.0060 426.0060
424.7540 425.0980 425.5810 425.9940 425.6490 425.1670 424.7540
421.8600 422.2040 422.7550 423.1690 422.6860 422.2040 421.8600
415.5200 416.0020 416.1400 416.8980 416.6910 416.2780 415.7960
408.6290 406.9060 407.0440 408.0090 409.0420 407.3890 406.5620
394.1580 394.2960 394.5030 395.1920 395.0540 394.5720 394.5720
374.5880 375.8290 376.9310 376.6550 374.6570 376.3800 377.4820
349.7810 351.3660 352.8130 351.9170 350.7460 352.1930 353.9150
317.8070 316.2910 318.2210 316.2910 316.8420 317.1870 319.8750
267.2280 269.4330 264.4720 267.9170 267.9170 269.6400 266.1260
200.4280 162.1010 174.1260 163.2380 199.5320 163.8650 174.8770
111.4940 118.7160 150.0280 118.3780 112.6450 116.1870 151.6540
73.5810 78.4390 99.5180 80.3960 75.7450 78.4250 100.4280
49.7660 69.2120 54.2240 71.2930 52.1980 71.8860 56.8360
35.5290 49.5180 46.4930 48.3810 35.8390 47.2780 48.2220
34.3720 37.9410 35.3290 38.5750 33.9930 39.9950 35.4050
24.1730 24.9380 28.9690 25.8750 24.7800 24.6350 28.5140
14.3050 15.9870 19.6670 16.4830 15.1460 15.9450 19.7770
6.0920 6.5390 7.0420 7.2350 6.9940 6.8220 6.6840
4.7550 4.9550 5.2780 5.2160 5.2090 5.4780 5.6640
3.8590 3.8520 3.8930 3.9000 3.8870 4.3210 4.4380
3.1150 3.1420 2.9350 2.8530 3.0870 3.4660 3.5970
2.8670 2.6670 2.4740 2.3500 2.5700 2.9290 3.1700
2.4120 2.4050 2.3360 2.0330 2.3500 2.6050 2.7840
1.6540 1.6670 1.9090 1.8880 1.7300 1.5920 1.6810
1.1300 1.1990 1.2680 1.4880 1.2270 1.1580 1.1300
1.0470 1.0400 1.0400 1.1440 1.0750 1.0540 1.0470
1.1300 1.1640 1.2060 1.1850 1.2130 1.1850 1.1710
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0];
color = 'r';
line = '-';
% plotting only the first and the last C-planes, i.e. 0 and 90 degrees respectively
for i = 1:6:size(ldc,2)
polarplot(degtorad(theta),ldc(:,i), 'Color', color, 'LineStyle', line, 'LineWidth', 1.5)
hold on
polarplot(-degtorad(theta),ldc(:,i), 'Color' ,color, 'LineStyle', line, 'LineWidth', 1.5)
line = ':';
end
ax = gca;
ax.ThetaZeroLocation = 'bottom';
ax.RAxisLocation = 0;
ax.ThetaTickLabel = {'0'; '30'; '60'; '90'; '120'; '150'; '180'; '150'; '120'; '90'; '60'; '30';};
我还没有尝试过,但是您可以使用 pol2cart
, then add the third dimension and use fill3
渲染表面,将您的极坐标转换为笛卡尔坐标。
好吧,我拖延了,在这里实现:
% range of angles
angles = 0:0.01:(2*pi);
% light intensity example (insert values from table)
r = 1 + sin(angles);
% convert to cartesian coordinates
[p1, p2] = pol2cart(angles, r);
% plot on x-axis (x=0)
X = zeros(size(p1));
Y = p1;
Z = p2;
C = ones(size(Z)); % color input needed
fill3(X,Y,Z,C)
hold on
% plot on y-axis (y=0)
X = p1;
Y = zeros(size(p1));
Z = p2;
C = ones(size(Z))+1;
fill3(p1,zeros(size(p1)),p2,C)
xlabel('x')
ylabel('y')
zlabel('z')
grid on
对于您的特定数据集,您可以执行以下操作
% angles around x-axis, need to turn by 90 degree right pol2cart output
anglesX = (0:5:360)/180*pi+pi/2;
% angles around z-axis
anglesZ = 0:15:90;
% loop over columns
for i = 1:size(ldc,2)
% you need to create a closed contour for fill3
ldcJoined = [ldc(:,i);ldc((end-1):-1:1,i)];
% plot for positive and negative angle around z, i as color-index
plotPlane(anglesX, ldcJoined, anglesZ(i), i)
hold on
plotPlane(anglesX, ldcJoined, -anglesZ(i), i)
end
xlabel('x')
ylabel('y')
zlabel('z')
function [] = plotPlane(anglesX, r, angleZ, c)
% convert to cartesian coordinates
[p1, p2] = pol2cart(anglesX, r');
% plot on x-axis (x=0)
X = zeros(size(p1));
Y = p1;
Z = p2;
C = ones(size(Z)) .* c; % color input needed, you could e.g. C=sin(angles);
h = fill3(X,Y,Z,C);
rotate(h, [0,0,1], angleZ)
end
给出