我想创建一个简单的电影推荐系统,其中 Y(i,j)=第 j 个用户评价的第 i 部电影,如果电影已评价,则 R(i,j)=1,否则 r(i,j)=0
I want to create a simple movie recommendation system with Y(i,j)=ith movie rated by jth user and R(i,j)=1 if a movie has been rated ,else r(i,j)=0
import tensorflow as tf
import pymatlab as mat
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
mat=scipy.io.loadmat('ex8_movies.mat')
Y=mat['Y']
R=mat['R']
plt.interactive(False)
#plt.plot(Y)
#plt.show()
print(Y[R==1])
#print(Y[R==0])
r=tf.constant(R,dtype=tf.float32)
params=scipy.io.loadmat('ex8_movieParams.mat')
num_users = params['num_users']
num_movies =params['num_movies']
num_features=params['num_features']
print("shape of Y:",np.shape(Y))
print(num_users)
print(num_movies)
x=np.random.rand(1682,2)
X=tf.placeholder(tf.float32,([1682 ,2]))
#X=tf.Variable(tf.zeros([1682,943]),dtype=tf.float32)
thetas=tf.Variable(tf.zeros([943,2]),dtype=tf.float32)
y=tf.placeholder(tf.float32,[1682 ,943])
sess=tf.InteractiveSession()
init = tf.global_variables_initializer()
sess.run(init)
#print((np.transpose(thetas)))
j_temp=tf.square(tf.matmul(X,tf.transpose(thetas))- y)
j_temp=j_temp([R==1])
cost=tf.reduce_mean(tf.reduce_sum(j_temp))
optimizer=tf.train.GradientDescentOptimizer(0.09).minimize(cost)
sess.run(j_temp,{X:x,y:Y})
#sess.run(j_tmp)
sess.run(cost)
print("slodvhbdfh\n\n")
print(Y[R==0])
我想创建一个简单的电影推荐系统,其中 Y(i,j)=第 j 个用户评价的第 i 部电影,如果电影已评价,则 R(i,j)=1,否则 r(i,j )=0
我收到错误:
"C:\Python\python interpreter\pythonw.exe" C:/Python/Projects/recommend.py
[5 4 4 ..., 2 3 3]
shape of Y: (1682, 943)
[[943]]
[[1682]]
File "C:/Python/Projects/recommend.py", line 38, in <module>
j_temp=j_temp([R==1])
TypeError: 'Tensor' object is not callable
Process finished with exit code 1
identifier(arguments)
是调用函数的 Python 语法。您尝试使用张量执行此操作,张量 不是 函数 - 您无法调用它。你想做什么?我不知道,因为你没有提供文本描述、评论,甚至没有有用的变量名。
此外,结构“[R==1]”不合法Python。如果您尝试获取该用户的所有评分电影,则需要查看语法以将过滤器应用于张量。这些关键字应该会引导您找到答案。
import tensorflow as tf
import pymatlab as mat
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
mat=scipy.io.loadmat('ex8_movies.mat')
Y=mat['Y']
R=mat['R']
plt.interactive(False)
#plt.plot(Y)
#plt.show()
print(Y[R==1])
#print(Y[R==0])
r=tf.constant(R,dtype=tf.float32)
params=scipy.io.loadmat('ex8_movieParams.mat')
num_users = params['num_users']
num_movies =params['num_movies']
num_features=params['num_features']
print("shape of Y:",np.shape(Y))
print(num_users)
print(num_movies)
x=np.random.rand(1682,2)
X=tf.placeholder(tf.float32,([1682 ,2]))
#X=tf.Variable(tf.zeros([1682,943]),dtype=tf.float32)
thetas=tf.Variable(tf.zeros([943,2]),dtype=tf.float32)
y=tf.placeholder(tf.float32,[1682 ,943])
sess=tf.InteractiveSession()
init = tf.global_variables_initializer()
sess.run(init)
#print((np.transpose(thetas)))
j_temp=tf.square(tf.matmul(X,tf.transpose(thetas))- y)
j_temp=j_temp([R==1])
cost=tf.reduce_mean(tf.reduce_sum(j_temp))
optimizer=tf.train.GradientDescentOptimizer(0.09).minimize(cost)
sess.run(j_temp,{X:x,y:Y})
#sess.run(j_tmp)
sess.run(cost)
print("slodvhbdfh\n\n")
print(Y[R==0])
我想创建一个简单的电影推荐系统,其中 Y(i,j)=第 j 个用户评价的第 i 部电影,如果电影已评价,则 R(i,j)=1,否则 r(i,j )=0 我收到错误:
"C:\Python\python interpreter\pythonw.exe" C:/Python/Projects/recommend.py
[5 4 4 ..., 2 3 3]
shape of Y: (1682, 943)
[[943]]
[[1682]]
File "C:/Python/Projects/recommend.py", line 38, in <module>
j_temp=j_temp([R==1])
TypeError: 'Tensor' object is not callable
Process finished with exit code 1
identifier(arguments)
是调用函数的 Python 语法。您尝试使用张量执行此操作,张量 不是 函数 - 您无法调用它。你想做什么?我不知道,因为你没有提供文本描述、评论,甚至没有有用的变量名。
此外,结构“[R==1]”不合法Python。如果您尝试获取该用户的所有评分电影,则需要查看语法以将过滤器应用于张量。这些关键字应该会引导您找到答案。