使用 WLSMV 的空单元格警告和缺少稳健的拟合度量
Empty cells warning and missing robust fit measures with WLSMV
我正在尝试用序数变量拟合模型,由于样本大小仅为 N=111,相关表中似乎有很多空单元格:
fit <- cfa(
model = my.model,
data = items,
ordered = c("oc1","oc2","oc3","oc4","oc5","oc6","oc7","oc8","oc9","oc10","oc11","oc12","oc13","oc14","oc15","oc16","oc17","oc18","oc19","oc20","oc21","oc22","oc23"),
estimator = "WLSMV"
)
lavaan WARNING: 253 bivariate tables have empty cells
所以我读到 lavaan 有 zero.add 选项,但是当我将 zero.add = c(0.5, 0.5)
传递给 cfa() 时,我仍然收到相同的警告。检查相关表后,似乎没有任何变化。仍未计算稳健的拟合度量,在检查它们时将它们设置为 NA。这是正常行为,还是我遗漏了什么?有没有办法设置选项以便 cfa() 接受它?我也用 lavaan() 和 cfa() 使用的默认值进行了尝试,但仍然没有……
我的版本是0.5.23.1097
好的,我发现 WLSMV 甚至不计算 "robust" 拟合度量,我应该使用 "scaled" 拟合度量。另外,我似乎忽略了,将 zero.add
设置为 TRUE
似乎稍微改变了适合度。
我正在尝试用序数变量拟合模型,由于样本大小仅为 N=111,相关表中似乎有很多空单元格:
fit <- cfa(
model = my.model,
data = items,
ordered = c("oc1","oc2","oc3","oc4","oc5","oc6","oc7","oc8","oc9","oc10","oc11","oc12","oc13","oc14","oc15","oc16","oc17","oc18","oc19","oc20","oc21","oc22","oc23"),
estimator = "WLSMV"
)
lavaan WARNING: 253 bivariate tables have empty cells
所以我读到 lavaan 有 zero.add 选项,但是当我将 zero.add = c(0.5, 0.5)
传递给 cfa() 时,我仍然收到相同的警告。检查相关表后,似乎没有任何变化。仍未计算稳健的拟合度量,在检查它们时将它们设置为 NA。这是正常行为,还是我遗漏了什么?有没有办法设置选项以便 cfa() 接受它?我也用 lavaan() 和 cfa() 使用的默认值进行了尝试,但仍然没有……
我的版本是0.5.23.1097
好的,我发现 WLSMV 甚至不计算 "robust" 拟合度量,我应该使用 "scaled" 拟合度量。另外,我似乎忽略了,将 zero.add
设置为 TRUE
似乎稍微改变了适合度。