无法 运行 预测,因为 tf.placeholder 有问题

Can't run prediciton because of troubles with tf.placeholder

抱歉,我是 Tensorflow 的新手。我正在开发一个简单的 onelayer_perceptron 脚本,只需获取初始参数即可使用 Tensorflow 训练神经网络:

我的编译器抱怨:

You must feed a value for placeholder tensor 'input' with dtype float

这里出现错误:

input_tensor = tf.placeholder(tf.float32,[None, n_input],name="input")

请看我到目前为止做了什么:

1) 我初始化我的输入值

n_input = 10  # Number of input neurons
n_hidden_1 = 10  # Number of hidden layers
n_classes = 3  # Out layers

weights = {
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    'out': tf.Variable(tf.random_normal([n_hidden_1, n_classes]))
}
biases = {
    'b1': tf.Variable(tf.random_normal([n_hidden_1])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}

2) 初始化占位符:

input_tensor = tf.placeholder(tf.float32, [None, n_input], name="input")
output_tensor = tf.placeholder(tf.float32, [None, n_classes], name="output")

3) 训练神经网络

# Construct model
prediction = onelayer_perceptron(input_tensor, weights, biases)

init = tf.global_variables_initializer() 

4) 这是我的 onelayer_perceptron 函数,它只执行典型的 NN 计算 matmul 层和权重,添加偏差并使用 sigmoid

激活
def onelayer_perceptron(input_tensor, weights, biases):
    layer_1_multiplication = tf.matmul(input_tensor, weights['h1'])
    layer_1_addition = tf.add(layer_1_multiplication, biases['b1'])
    layer_1_activation = tf.nn.sigmoid(layer_1_addition)

    out_layer_multiplication = tf.matmul(layer_1_activation, weights['out'])
    out_layer_addition = out_layer_multiplication + biases['out']

    return out_layer_addition

5) 运行 我的脚本

with tf.Session() as sess:
   sess.run(init)

   i = sess.run(input_tensor)
   print(i)

您没有将输入提供给占位符;你使用 feed_dict.

你应该做类似的事情:

 out = session.run(Tensor(s)_you_want_to_evaluate, feed_dict={input_tensor: input of size [batch_size,n_input], output_tensor: output of size [batch size, classes] })