Pandas 计数组

Pandas count over groups

我有一个 pandas 数据框,如下所示:

ID  round   player1     player2 
1   1       A           B           
1   2       A           C
1   3       B           D
2   1       B           C           
2   2       C           D
2   3       C           E
3   1       B           C           
3   2       C           D
3   3       C           A

数据框包含体育比赛结果,其中 ID 列表示一场比赛,round 列表示每场比赛的轮次,player1player2列包含在各自的 round.

中互相对抗的玩家的名字

我现在想累计参加锦标赛的次数,比方说,玩家 A。在伪代码中,这意味着:如果姓名为 A 的玩家在每次锦标赛 ID 中出现在 player1player2 列中,则将计数器加 1。

结果应如下所示(注意:在我的示例中,玩家 A 确实以 IDs 1 和 3 参加了锦标赛):

ID  round   player1     player2     playerAparticipated
1   1       A           B           1
1   2       A           C           1
1   3       B           D           1
2   1       B           C           0
2   2       C           D           0
2   3       C           E           0
3   1       B           C           2
3   2       C           D           2
3   3       C           A           2

我目前的状态是,我添加了一个包含值 10 的 "helper" 列,表示如果相应玩家参加了比赛:

ID  round   player1     player2     helper
1   1       A           B           1
1   2       A           C           1
1   3       B           D           1
2   1       B           C           0
2   2       C           D           0
2   3       C           E           0
3   1       B           C           1
3   2       C           D           1
3   3       C           A           1

我认为我只需要最后一步,例如巧妙地使用 cumsum() 以所需方式计算 helper 列。但是,我还没有想出解决办法。

我认为你需要:


df1 = df.drop_duplicates('ID').set_index('ID')
s = df1.loc[df1['helper'] != 0, 'helper'].cumsum().reindex(index=df1.index, fill_value=0)
df['playerAparticipated'] = df['ID'].map(s)
print (df)
   ID  round player1 player2  helper  playerAparticipated
0   1      1       A       B       1                    1
1   1      2       A       C       1                    1
2   1      3       B       D       1                    1
3   2      1       B       C       0                    0
4   2      2       C       D       0                    0
5   2      3       C       E       0                    0
6   3      1       B       C       1                    2
7   3      2       C       D       1                    2
8   3      3       C       A       1                    2

而不是 map 可以使用 joinrename:

df = df.join(s.rename('playerAparticipated'), on='ID')
print (df)
   ID  round player1 player2  helper  playerAparticipated
0   1      1       A       B       1                    1
1   1      2       A       C       1                    1
2   1      3       B       D       1                    1
3   2      1       B       C       0                    0
4   2      2       C       D       0                    0
5   2      3       C       E       0                    0
6   3      1       B       C       1                    2
7   3      2       C       D       1                    2
8   3      3       C       A       1                    2

与@jezrael 类似的方法,我做的有点慢:)。

首先,将 ID 移动到您的索引中:

df = df.reset_index().set_index(['index','ID'])
#          round player1 player2  helper
# index ID
# 0     1       1       A       B       1
# 1     1       2       A       C       1
# 2     1       3       B       D       1
# 3     2       1       B       C       0
# 4     2       2       C       D       0
# 5     2       3       C       E       0
# 6     3       1       B       C       1
# 7     3       2       C       D       1
# 8     3       3       C       A       1

接下来,过滤掉helper为0的行,得到锦标赛累计总和ID,并将结果赋值给一个变量:

tournament_count = df[df['helper'] > 0].groupby(['ID','helper']).first().reset_index(level=1)['helper'].cumsum().rename("playerAparticipated")
# ID
# 1    1
# 3    2

最后,用 df:

加入 tournament_count DataFrame
df.join(tournament_counts, how="left").fillna(0)
#          round player1 player2  helper  tournament_counts
# index ID
# 0     1       1       A       B       1                1.0
# 1     1       2       A       C       1                1.0
# 2     1       3       B       D       1                1.0
# 3     2       1       B       C       0                0.0
# 4     2       2       C       D       0                0.0
# 5     2       3       C       E       0                0.0
# 6     3       1       B       C       1                2.0
# 7     3       2       C       D       1                2.0
# 8     3       3       C       A       1                2.0