Python 机器学习训练分类器错误索引超出范围

Python Machine Learning Trained Classifer Error index is out of bounds

我有一个训练有素的分类器, 工作正常。

我试图修改它以使用循环处理多个 .csv 文件,但这已经破坏了它,以至于原始代码(工作正常)现在 returns 同样的错误对于 .csv 文件,它之前处理过没有任何问题。

我很困惑,看不出在之前一切正常的情况下突然出现此错误的原因。原始(工作)代码是;

    # -*- coding: utf-8 -*-

    import csv
    import pandas
    import numpy as np
    import sklearn.ensemble as ske
    import re
    import os
    import collections
    import pickle
    from sklearn.externals import joblib
    from sklearn import model_selection, tree, linear_model, svm


    # Load dataset
    url = 'test_6_During_100.csv'
    dataset = pandas.read_csv(url)
    dataset.set_index('Name', inplace = True)
    ##dataset = dataset[['ProcessorAffinity','ProductVersion','Handle','Company',
    ##            'UserProcessorTime','Path','Product','Description',]]

    # Open file to output everything to
    new_url = re.sub('\.csv$', '', url)
    f = open(new_url + " output report", 'w')
    f.write(new_url + " output report\n")
    f.write("\n")


    # shape
    print(dataset.shape)
    print("\n")
    f.write("Dataset shape " + str(dataset.shape) + "\n")
    f.write("\n")

    clf = joblib.load(os.path.join(
            os.path.dirname(os.path.realpath(__file__)),
            'classifier/classifier.pkl'))


    Class_0 = []
    Class_1 = []
    prob = []

    for index, row in dataset.iterrows():
        res = clf.predict([row])
        if res == 0:
            if index in malware:
                Class_0.append(index)
            elif index in Class_1:
                Class_1.append(index)           
            else:
                print "Is ", index, " recognised?"
                designation = raw_input()

                if designation == "No":
                    Class_0.append(index)
                else:
                    Class_1.append(index)

    dataset['Type']  = 1                    
    dataset.loc[dataset.index.str.contains('|'.join(Class_0)), 'Type'] = 0

    print "\n"

    results = []

    results.append(collections.OrderedDict.fromkeys(dataset.index[dataset['Type'] == 0]))
    print (results)

    X = dataset.drop(['Type'], axis=1).values
    Y = dataset['Type'].values


    clf.set_params(n_estimators = len(clf.estimators_) + 40, warm_start = True)
    clf.fit(X, Y)
    joblib.dump(clf, 'classifier/classifier.pkl')

    output = collections.Counter(Class_0)

    print "Class_0; \n"
    f.write ("Class_0; \n")

    for key, value in output.items():    
        f.write(str(key) + " ; " + str(value) + "\n")
        print(str(key) + " ; " + str(value))

    print "\n"
    f.write ("\n") 

    output_1 = collections.Counter(Class_1)

    print "Class_1; \n"
    f.write ("Class_1; \n")

    for key, value in output_1.items():    
        f.write(str(key) + " ; " + str(value) + "\n")
        print(str(key) + " ; " + str(value))

    print "\n" 

    f.close()

我的新代码是相同的,但包裹在几个嵌套循环中,以保持脚本 运行 当文件夹中有文件要处理时,新代码(导致错误的代码)在下面;

# -*- coding: utf-8 -*-

import csv
import pandas
import numpy as np
import sklearn.ensemble as ske
import re
import os
import time
import collections
import pickle
from sklearn.externals import joblib
from sklearn import model_selection, tree, linear_model, svm

# Our arrays which we'll store our process details in and then later print out data for
Class_0 = []
Class_1 = []
prob = []
results = []

# Open file to output our report too
timestr = time.strftime("%Y%m%d%H%M%S")

f = open(timestr + " output report.txt", 'w')
f.write(timestr + " output report\n")
f.write("\n")

count = len(os.listdir('.'))

while (count > 0):
    # Load dataset
    for filename in os.listdir('.'):
            if filename.endswith('.csv') and filename.startswith("processes_"):

                url = filename

                dataset = pandas.read_csv(url)
                dataset.set_index('Name', inplace = True)

                clf = joblib.load(os.path.join(
                        os.path.dirname(os.path.realpath(__file__)),
                        'classifier/classifier.pkl'))               

                for index, row in dataset.iterrows():
                    res = clf.predict([row])
                    if res == 0:
                        if index in Class_0:
                            Class_0.append(index)
                        elif index in Class_1:
                            Class_1.append(index)           
                        else:
                            print "Is ", index, " recognised?"
                            designation = raw_input()

                            if designation == "No":
                                Class_0.append(index)
                            else:
                                Class_1.append(index)

                dataset['Type']  = 1                    
                dataset.loc[dataset.index.str.contains('|'.join(Class_0)), 'Type'] = 0

                print "\n"

                results.append(collections.OrderedDict.fromkeys(dataset.index[dataset['Type'] == 0]))
                print (results)

                X = dataset.drop(['Type'], axis=1).values
                Y = dataset['Type'].values


                clf.set_params(n_estimators = len(clf.estimators_) + 40, warm_start = True)
                clf.fit(X, Y)
                joblib.dump(clf, 'classifier/classifier.pkl')

                os.remove(filename) 


output = collections.Counter(Class_0)

print "Class_0; \n"
f.write ("Class_0; \n")

for key, value in output.items():    
    f.write(str(key) + " ; " + str(value) + "\n")
    print(str(key) + " ; " + str(value))

print "\n"
f.write ("\n") 

output_1 = collections.Counter(Class_1)

print "Class_1; \n"
f.write ("Class_1; \n")

for key, value in output_1.items():    
    f.write(str(key) + " ; " + str(value) + "\n")
    print(str(key) + " ; " + str(value))

print "\n" 

f.close()

错误 (IndexError: index 1 is out of bounds for size 1) 引用了预测线 res = clf.predict([row])。据我所知,问题是没有足够的 "classes" 或数据标签类型(我要使用二元分类器)?但是我之前一直在使用这种确切的方法(在嵌套循环之外)而没有任何问题。

https://codeshare.io/Gkpb44 - 包含上述 .csv 文件的我的 .csv 数据的代码共享 link。

问题是 [row] 是一个长度为 1 的数组。您的程序试图访问不存在的索引 1(索引从 0 开始)。看起来您可能想要执行 res = clf.predict(row) 或再次查看行变量。希望这有帮助。

所以我意识到问题是什么了。

我创建了一种格式,其中加载了 classifier,然后使用 warm_start 我重新拟合数据以更新 classifier 以尝试模拟增量/ 在线学习。当我处理其中包含两种类型 class 的数据时,这很有效。但是,如果数据只是正数,那么当我重新安装 classifier 时它会破坏它。

现在我已经注释掉了以下内容;

clf.set_params(n_estimators = len(clf.estimators_) + 40, warm_start = True)
clf.fit(X, Y)
joblib.dump(clf, 'classifier/classifier.pkl')

已解决问题。展望未来,我可能会添加(又一个!)条件语句以查看我是否应该重新拟合数据。

我很想删除这个问题,但是由于我在搜索过程中没有找到任何涵盖这个事实的内容,所以我想我会留下这个答案,以防有人发现他们有同样的问题。