与 S3 存储桶的 Sparklyr 连接抛出错误
Sparklyr connection to S3 bucket throwing up error
我正在尝试从 R sparklyr 连接到 S3 存储桶。
我能够将本地文件读入 spark 上下文。
但是尝试连接 s3 似乎是个问题,
抛出一大堆错误。
这是使用的代码列表。
注意:单个 s3 存储桶有多个 csv 文件
遵循相同的模式。
library( sparklyr )
library( tidyverse )
sparklyr :: spark_install ( version = "2.0.2" , hadoop_version = "2.7" )
sparklyr::spark_install( version = "2.0.2" , hadoop_version = "2.7" )
Sys.setenv ( AWS_ACCESS_KEY_ID = "xxxx" )
Sys.setenv ( AWS_SECRET_ACCESS_KEY = "xxxx" )
Sys.setenv ( AWS_DEFAULT_REGION = "ap-southeast-1" )
Spark_config <- sparklyr :: spark_config ()
sc <- sparklyr :: spark_connect ( master = "local" ,config = Spark_config)
files = "s3n://temp-sg/MVC"
temp<-spark_read_csv(sc,name = "MVC",path=files,infer_schema = TRUE)
spark_disconnect(sc)
非常感谢任何帮助。
这是使用 s3a://
的错误转储
Error: java.lang.IllegalArgumentException: java.net.URISyntaxException: Expected scheme-specific part at index 4: s3a:
at org.apache.hadoop.fs.Path.initialize(Path.java:206)
at org.apache.hadoop.fs.Path.<init>(Path.java:172)
at org.apache.hadoop.fs.Path.<init>(Path.java:94)
at org.apache.hadoop.fs.Globber.glob(Globber.java:211)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1644)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:257)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.RDD$$anonfun$take.apply(RDD.scala:1307)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.take(RDD.scala:1302)
at com.databricks.spark.csv.CsvRelation.firstLine$lzycompute(CsvRelation.scala:249)
at com.databricks.spark.csv.CsvRelation.firstLine(CsvRelation.scala:245)
at com.databricks.spark.csv.CsvRelation.inferSchema(CsvRelation.scala:223)
at com.databricks.spark.csv.CsvRelation.<init>(CsvRelation.scala:72)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:157)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:44)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:158)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:119)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:109)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at sparklyr.Invoke$.invoke(invoke.scala:94)
at sparklyr.StreamHandler$.handleMethodCall(stream.scala:89)
at sparklyr.StreamHandler$.read(stream.scala:55)
at sparklyr.BackendHandler.channelRead0(handler.scala:49)
at sparklyr.BackendHandler.channelRead0(handler.scala:14)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:244)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor.run(SingleThreadEventExecutor.java:111)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:137)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.URISyntaxException: Expected scheme-specific part at index 4: s3a:
at java.net.URI$Parser.fail(Unknown Source)
at java.net.URI$Parser.failExpecting(Unknown Source)
at java.net.URI$Parser.parse(Unknown Source)
at java.net.URI.<init>(Unknown Source)
at org.apache.hadoop.fs.Path.initialize(Path.java:203)
... 58 more
使用 s3n://
的错误转储
Error: java.lang.IllegalArgumentException: java.net.URISyntaxException: Expected scheme-specific part at index 4: s3n:
at org.apache.hadoop.fs.Path.initialize(Path.java:206)
at org.apache.hadoop.fs.Path.<init>(Path.java:172)
at org.apache.hadoop.fs.Path.<init>(Path.java:94)
at org.apache.hadoop.fs.Globber.glob(Globber.java:211)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1644)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:257)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.RDD$$anonfun$take.apply(RDD.scala:1307)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.take(RDD.scala:1302)
at com.databricks.spark.csv.CsvRelation.firstLine$lzycompute(CsvRelation.scala:249)
at com.databricks.spark.csv.CsvRelation.firstLine(CsvRelation.scala:245)
at com.databricks.spark.csv.CsvRelation.inferSchema(CsvRelation.scala:223)
at com.databricks.spark.csv.CsvRelation.<init>(CsvRelation.scala:72)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:157)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:44)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:158)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:119)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:109)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at sparklyr.Invoke$.invoke(invoke.scala:94)
at sparklyr.StreamHandler$.handleMethodCall(stream.scala:89)
at sparklyr.StreamHandler$.read(stream.scala:55)
at sparklyr.BackendHandler.channelRead0(handler.scala:49)
at sparklyr.BackendHandler.channelRead0(handler.scala:14)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:244)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor.run(SingleThreadEventExecutor.java:111)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:137)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.URISyntaxException: Expected scheme-specific part at index 4: s3n:
at java.net.URI$Parser.fail(Unknown Source)
at java.net.URI$Parser.failExpecting(Unknown Source)
at java.net.URI$Parser.parse(Unknown Source)
at java.net.URI.<init>(Unknown Source)
at org.apache.hadoop.fs.Path.initialize(Path.java:203)
... 58 more
如果没有看到您的确切错误消息,很难说出到底出了什么问题。但是,我注意到一件事是您使用 s3n
而不是 s3a
。这是为什么?我建议改为尝试 s3a
:
files <- 's3a://temp-sg/MVC'
temp <- spark_read_csv(sc,
name = 'MVC',
path = files,
infer_schema = TRUE)
另请参阅 以了解有关两者之间区别的更多详细信息。
已解决问题。
这是代码片段。
注意: 需要验证正确的 JVM 是 运行。我在 64 位机器上使用了 32 位 jvm,因为 64 位机器不起作用。
- 火花版本 - 2.0
- hadoop 版本 - 2.7
# install.packages("devtools")
# devtools::install_github("rstudio/sparklyr")
library(sparklyr)
library(dplyr)
# conf$sparklyr.defaultPackages <- "org.apache.hadoop:hadoop-aws:2.7.3"
# config$spark.executor.memory <- "4g"
sc <- spark_connect(master = "local",config = conf)
#Get spark context
ctx <- sparklyr::spark_context(sc)
#Use below to set the java spark context
jsc <- invoke_static(
sc,
"org.apache.spark.api.java.JavaSparkContext",
"fromSparkContext",
ctx
)
#set the s3 configs:
hconf <- jsc %>% invoke("hadoopConfiguration")
hconf %>% invoke("set","fs.s3a.access.key", "xxxx")
hconf %>% invoke("set","fs.s3a.secret.key", "xxxx")
# check if spar session is active
sparklyr::spark_connection_is_open(sc=sc)
small_file = "s3a://temp-sg/MVC"
temp<-spark_read_csv(sc,name = "MVC",path=small_file,infer_schema = TRUE)
spark_disconnect(sc)
我正在尝试从 R sparklyr 连接到 S3 存储桶。 我能够将本地文件读入 spark 上下文。 但是尝试连接 s3 似乎是个问题, 抛出一大堆错误。 这是使用的代码列表。
注意:单个 s3 存储桶有多个 csv 文件 遵循相同的模式。
library( sparklyr )
library( tidyverse )
sparklyr :: spark_install ( version = "2.0.2" , hadoop_version = "2.7" )
sparklyr::spark_install( version = "2.0.2" , hadoop_version = "2.7" )
Sys.setenv ( AWS_ACCESS_KEY_ID = "xxxx" )
Sys.setenv ( AWS_SECRET_ACCESS_KEY = "xxxx" )
Sys.setenv ( AWS_DEFAULT_REGION = "ap-southeast-1" )
Spark_config <- sparklyr :: spark_config ()
sc <- sparklyr :: spark_connect ( master = "local" ,config = Spark_config)
files = "s3n://temp-sg/MVC"
temp<-spark_read_csv(sc,name = "MVC",path=files,infer_schema = TRUE)
spark_disconnect(sc)
非常感谢任何帮助。
这是使用 s3a://
的错误转储Error: java.lang.IllegalArgumentException: java.net.URISyntaxException: Expected scheme-specific part at index 4: s3a:
at org.apache.hadoop.fs.Path.initialize(Path.java:206)
at org.apache.hadoop.fs.Path.<init>(Path.java:172)
at org.apache.hadoop.fs.Path.<init>(Path.java:94)
at org.apache.hadoop.fs.Globber.glob(Globber.java:211)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1644)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:257)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.RDD$$anonfun$take.apply(RDD.scala:1307)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.take(RDD.scala:1302)
at com.databricks.spark.csv.CsvRelation.firstLine$lzycompute(CsvRelation.scala:249)
at com.databricks.spark.csv.CsvRelation.firstLine(CsvRelation.scala:245)
at com.databricks.spark.csv.CsvRelation.inferSchema(CsvRelation.scala:223)
at com.databricks.spark.csv.CsvRelation.<init>(CsvRelation.scala:72)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:157)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:44)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:158)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:119)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:109)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at sparklyr.Invoke$.invoke(invoke.scala:94)
at sparklyr.StreamHandler$.handleMethodCall(stream.scala:89)
at sparklyr.StreamHandler$.read(stream.scala:55)
at sparklyr.BackendHandler.channelRead0(handler.scala:49)
at sparklyr.BackendHandler.channelRead0(handler.scala:14)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:244)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor.run(SingleThreadEventExecutor.java:111)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:137)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.URISyntaxException: Expected scheme-specific part at index 4: s3a:
at java.net.URI$Parser.fail(Unknown Source)
at java.net.URI$Parser.failExpecting(Unknown Source)
at java.net.URI$Parser.parse(Unknown Source)
at java.net.URI.<init>(Unknown Source)
at org.apache.hadoop.fs.Path.initialize(Path.java:203)
... 58 more
使用 s3n://
的错误转储Error: java.lang.IllegalArgumentException: java.net.URISyntaxException: Expected scheme-specific part at index 4: s3n:
at org.apache.hadoop.fs.Path.initialize(Path.java:206)
at org.apache.hadoop.fs.Path.<init>(Path.java:172)
at org.apache.hadoop.fs.Path.<init>(Path.java:94)
at org.apache.hadoop.fs.Globber.glob(Globber.java:211)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1644)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:257)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.RDD$$anonfun$take.apply(RDD.scala:1307)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.take(RDD.scala:1302)
at com.databricks.spark.csv.CsvRelation.firstLine$lzycompute(CsvRelation.scala:249)
at com.databricks.spark.csv.CsvRelation.firstLine(CsvRelation.scala:245)
at com.databricks.spark.csv.CsvRelation.inferSchema(CsvRelation.scala:223)
at com.databricks.spark.csv.CsvRelation.<init>(CsvRelation.scala:72)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:157)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:44)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:158)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:119)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:109)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at sparklyr.Invoke$.invoke(invoke.scala:94)
at sparklyr.StreamHandler$.handleMethodCall(stream.scala:89)
at sparklyr.StreamHandler$.read(stream.scala:55)
at sparklyr.BackendHandler.channelRead0(handler.scala:49)
at sparklyr.BackendHandler.channelRead0(handler.scala:14)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:244)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor.run(SingleThreadEventExecutor.java:111)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:137)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.URISyntaxException: Expected scheme-specific part at index 4: s3n:
at java.net.URI$Parser.fail(Unknown Source)
at java.net.URI$Parser.failExpecting(Unknown Source)
at java.net.URI$Parser.parse(Unknown Source)
at java.net.URI.<init>(Unknown Source)
at org.apache.hadoop.fs.Path.initialize(Path.java:203)
... 58 more
如果没有看到您的确切错误消息,很难说出到底出了什么问题。但是,我注意到一件事是您使用 s3n
而不是 s3a
。这是为什么?我建议改为尝试 s3a
:
files <- 's3a://temp-sg/MVC'
temp <- spark_read_csv(sc,
name = 'MVC',
path = files,
infer_schema = TRUE)
另请参阅
已解决问题。 这是代码片段。 注意: 需要验证正确的 JVM 是 运行。我在 64 位机器上使用了 32 位 jvm,因为 64 位机器不起作用。 - 火花版本 - 2.0 - hadoop 版本 - 2.7
# install.packages("devtools")
# devtools::install_github("rstudio/sparklyr")
library(sparklyr)
library(dplyr)
# conf$sparklyr.defaultPackages <- "org.apache.hadoop:hadoop-aws:2.7.3"
# config$spark.executor.memory <- "4g"
sc <- spark_connect(master = "local",config = conf)
#Get spark context
ctx <- sparklyr::spark_context(sc)
#Use below to set the java spark context
jsc <- invoke_static(
sc,
"org.apache.spark.api.java.JavaSparkContext",
"fromSparkContext",
ctx
)
#set the s3 configs:
hconf <- jsc %>% invoke("hadoopConfiguration")
hconf %>% invoke("set","fs.s3a.access.key", "xxxx")
hconf %>% invoke("set","fs.s3a.secret.key", "xxxx")
# check if spar session is active
sparklyr::spark_connection_is_open(sc=sc)
small_file = "s3a://temp-sg/MVC"
temp<-spark_read_csv(sc,name = "MVC",path=small_file,infer_schema = TRUE)
spark_disconnect(sc)