CUDA 动态并行,性能差
CUDA Dynamic Parallelism, bad performance
我们在使用 CUDA 动态并行时遇到性能问题。目前,CDP 的执行速度至少比传统方法慢 3 倍。
我们做了最简单的可重现代码来展示这个问题,就是把一个数组的所有元素的值都增加+1。即
a[0,0,0,0,0,0,0,.....,0] --> kernel +1 --> a[1,1,1,1,1,1,1,1,1]
这个简单示例的目的只是为了看看 CDP 是否可以像其他的一样执行,或者是否有严重的开销。
代码在这里:
#include <stdio.h>
#include <cuda.h>
#define BLOCKSIZE 512
__global__ void kernel_parent(int *a, int n, int N);
__global__ void kernel_simple(int *a, int n, int N, int offset);
// N is the total array size
// n is the worksize for a kernel (one third of N)
__global__ void kernel_parent(int *a, int n, int N){
cudaStream_t s1, s2;
cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if(tid == 0){
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (n + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
kernel_simple<<< grid, block, 0, s1 >>> (a, n, N, n);
kernel_simple<<< grid, block, 0, s2 >>> (a, n, N, 2*n);
}
a[tid] += 1;
}
__global__ void kernel_simple(int *a, int n, int N, int offset){
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int pos = tid + offset;
if(pos < N){
a[pos] += 1;
}
}
int main(int argc, char **argv){
if(argc != 3){
fprintf(stderr, "run as ./prog n method\nn multiple of 32 eg: 1024, 1048576 (1024^2), 4194304 (2048^2), 16777216 (4096^2)\nmethod:\n0 (traditional) \n1 (dynamic parallelism)\n2 (three kernels using unique streams)\n");
exit(EXIT_FAILURE);
}
int N = atoi(argv[1])*3;
int method = atoi(argv[2]);
// init array as 0
int *ah, *ad;
printf("genarray of 3*N = %i.......", N); fflush(stdout);
ah = (int*)malloc(sizeof(int)*N);
for(int i=0; i<N; ++i){
ah[i] = 0;
}
printf("done\n"); fflush(stdout);
// malloc and copy array to gpu
printf("cudaMemcpy:Host->Device..........", N); fflush(stdout);
cudaMalloc(&ad, sizeof(int)*N);
cudaMemcpy(ad, ah, sizeof(int)*N, cudaMemcpyHostToDevice);
printf("done\n"); fflush(stdout);
// kernel launch (timed)
cudaStream_t s1, s2, s3;
cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&s3, cudaStreamNonBlocking);
cudaEvent_t start, stop;
float rtime = 0.0f;
cudaEventCreate(&start);
cudaEventCreate(&stop);
printf("Kernel...........................", N); fflush(stdout);
if(method == 0){
// CLASSIC KERNEL LAUNCH
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (N + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
cudaEventRecord(start, 0);
kernel_simple<<< grid, block >>> (ad, N, N, 0);
cudaDeviceSynchronize();
cudaEventRecord(stop, 0);
}
else if(method == 1){
// DYNAMIC PARALLELISM
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (N/3 + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
cudaEventRecord(start, 0);
kernel_parent<<< grid, block, 0, s1 >>> (ad, N/3, N);
cudaDeviceSynchronize();
cudaEventRecord(stop, 0);
}
else{
// THREE CONCURRENT KERNEL LAUNCHES USING STREAMS
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (N/3 + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
cudaEventRecord(start, 0);
kernel_simple<<< grid, block, 0, s1 >>> (ad, N/3, N, 0);
kernel_simple<<< grid, block, 0, s2 >>> (ad, N/3, N, N/3);
kernel_simple<<< grid, block, 0, s3 >>> (ad, N/3, N, 2*(N/3));
cudaDeviceSynchronize();
cudaEventRecord(stop, 0);
}
printf("done\n"); fflush(stdout);
printf("cudaMemcpy:Device->Host..........", N); fflush(stdout);
cudaMemcpy(ah, ad, sizeof(int)*N, cudaMemcpyDeviceToHost);
printf("done\n"); fflush(stdout);
printf("checking result.................."); fflush(stdout);
for(int i=0; i<N; ++i){
if(ah[i] != 1){
fprintf(stderr, "bad element: a[%i] = %i\n", i, ah[i]);
exit(EXIT_FAILURE);
}
}
printf("done\n"); fflush(stdout);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&rtime, start, stop);
printf("rtime: %f ms\n", rtime); fflush(stdout);
return EXIT_SUCCESS;
}
可以用
编译
nvcc -arch=sm_35 -rdc=true -lineinfo -lcudadevrt -use_fast_math main.cu -o prog
这个例子可以用3种方法计算结果:
- 简单内核:只有一个经典内核 +1 遍历数组。
- 动态并行:从 main() 调用一个 parent 内核,它在范围 [0,N/3) 上执行 +1,并且还调用两个 child 内核。第一个 child 在 [N/3, 2*N/3) 范围内执行 +1),第二个 child 在 [2*N/3,N) 范围内. Childs 使用不同的流启动,因此它们可以并发。
- 来自主机的三个流:这个只是从 main() 启动三个 non-blocking 流,数组的三分之一一个。
我得到以下方法 0(简单内核)的配置文件:
方法 1(动态并行)的以下内容:
以下是方法 2(来自主机的三个流)
运行宁次是这样的:
➜ simple-cdp git:(master) ✗ ./prog 16777216 0
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 1.140928 ms
➜ simple-cdp git:(master) ✗ ./prog 16777216 1
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 5.790048 ms
➜ simple-cdp git:(master) ✗ ./prog 16777216 2
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 1.011936 ms
从图片中可以看出,主要问题是在动态并行方法中,parent 内核在两个 child 内核之后花费过多的时间来关闭已经完成,这就是让它花费 3 倍或 4 倍的原因。 即使考虑最坏的情况,如果所有三个内核(parent 和两个 childs)运行 串行,它应该少得多。即,每个内核有 N/3 的工作量,因此整个 parent 内核应该占用大约 3 child 个内核,这要少得多。 有办法解决这个问题吗?
编辑:child 内核以及方法 2 的序列化现象已由 Robert Crovella 在评论中进行了解释(非常感谢)。内核连续执行 运行 的事实不会使粗体文本中描述的问题无效(至少现在不是)。
对设备运行时的调用是 "expensive",就像对主机运行时的调用是昂贵的一样。在这种情况下,您似乎正在调用设备运行时来为每个线程创建流,即使此代码只需要它们用于线程 0。
通过修改您的代码以仅请求线程 0 的流创建,我们可以在我们为子内核启动使用单独的流的情况和我们没有为子内核启动使用单独的流的情况之间产生时间奇偶校验子内核启动:
$ cat t370.cu
#include <stdio.h>
#define BLOCKSIZE 512
__global__ void kernel_parent(int *a, int n, int N);
__global__ void kernel_simple(int *a, int n, int N, int offset);
// N is the total array size
// n is the worksize for a kernel (one third of N)
__global__ void kernel_parent(int *a, int n, int N){
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if(tid == 0){
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (n + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
#ifdef USE_STREAMS
cudaStream_t s1, s2;
cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
kernel_simple<<< grid, block, 0, s1 >>> (a, n, N, n);
kernel_simple<<< grid, block, 0, s2 >>> (a, n, N, 2*n);
#else
kernel_simple<<< grid, block >>> (a, n, N, n);
kernel_simple<<< grid, block >>> (a, n, N, 2*n);
#endif
// these next 2 lines add noticeably to the overall timing
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) printf("oops1: %d\n", (int)err);
}
a[tid] += 1;
}
__global__ void kernel_simple(int *a, int n, int N, int offset){
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int pos = tid + offset;
if(pos < N){
a[pos] += 1;
}
}
int main(int argc, char **argv){
if(argc != 3){
fprintf(stderr, "run as ./prog n method\nn multiple of 32 eg: 1024, 1048576 (1024^2), 4194304 (2048^2), 16777216 (4096^2)\nmethod:\n0 (traditional) \n1 (dynamic parallelism)\n2 (three kernels using unique streams)\n");
exit(EXIT_FAILURE);
}
int N = atoi(argv[1])*3;
int method = atoi(argv[2]);
// init array as 0
int *ah, *ad;
printf("genarray of 3*N = %i.......", N); fflush(stdout);
ah = (int*)malloc(sizeof(int)*N);
for(int i=0; i<N; ++i){
ah[i] = 0;
}
printf("done\n"); fflush(stdout);
// malloc and copy array to gpu
printf("cudaMemcpy:Host->Device..........", N); fflush(stdout);
cudaMalloc(&ad, sizeof(int)*N);
cudaMemcpy(ad, ah, sizeof(int)*N, cudaMemcpyHostToDevice);
printf("done\n"); fflush(stdout);
// kernel launch (timed)
cudaStream_t s1, s2, s3;
cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&s3, cudaStreamNonBlocking);
cudaEvent_t start, stop;
float rtime = 0.0f;
cudaEventCreate(&start);
cudaEventCreate(&stop);
printf("Kernel...........................", N); fflush(stdout);
if(method == 0){
// CLASSIC KERNEL LAUNCH
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (N + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
cudaEventRecord(start, 0);
kernel_simple<<< grid, block >>> (ad, N, N, 0);
cudaDeviceSynchronize();
cudaEventRecord(stop, 0);
}
else if(method == 1){
// DYNAMIC PARALLELISM
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (N/3 + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
cudaEventRecord(start, 0);
kernel_parent<<< grid, block, 0, s1 >>> (ad, N/3, N);
cudaDeviceSynchronize();
cudaEventRecord(stop, 0);
}
else{
// THREE CONCURRENT KERNEL LAUNCHES USING STREAMS
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (N/3 + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
cudaEventRecord(start, 0);
kernel_simple<<< grid, block, 0, s1 >>> (ad, N/3, N, 0);
kernel_simple<<< grid, block, 0, s2 >>> (ad, N/3, N, N/3);
kernel_simple<<< grid, block, 0, s3 >>> (ad, N/3, N, 2*(N/3));
cudaDeviceSynchronize();
cudaEventRecord(stop, 0);
}
printf("done\n"); fflush(stdout);
printf("cudaMemcpy:Device->Host..........", N); fflush(stdout);
cudaMemcpy(ah, ad, sizeof(int)*N, cudaMemcpyDeviceToHost);
printf("done\n"); fflush(stdout);
printf("checking result.................."); fflush(stdout);
for(int i=0; i<N; ++i){
if(ah[i] != 1){
fprintf(stderr, "bad element: a[%i] = %i\n", i, ah[i]);
exit(EXIT_FAILURE);
}
}
printf("done\n"); fflush(stdout);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&rtime, start, stop);
printf("rtime: %f ms\n", rtime); fflush(stdout);
return EXIT_SUCCESS;
}
$ nvcc -arch=sm_52 -rdc=true -lcudadevrt -o t370 t370.cu
$ ./t370 16777216 1
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 6.925632 ms
$ nvcc -arch=sm_52 -rdc=true -lcudadevrt -o t370 t370.cu -DUSE_STREAMS
$ ./t370 16777216 1
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 6.673568 ms
$
虽然没有包含在上面的测试输出中,但根据我的测试,这也将 CUDA 动态并行 (CDP) 案例 (1
) 带入 "approximate parity" 和非 CDP 案例 ( 0
、2
)。请注意,我们可以通过放弃在父内核(我添加到您的代码中)中对 cudaGetLastError()
的调用,将上述时间缩短约 1 毫秒(!)。
#include <stdio.h>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
using thrust::host_vector;
using thrust::device_vector;
#define BLOCKSIZE 512
__global__ void child(int* a)
{
if (threadIdx.x == 0 && blockIdx.x == 0)
a[0]++;
}
__global__ void parent(int* a)
{
if (threadIdx.x == 0 && blockIdx.x == 0)
child<<<gridDim, blockDim>>>(a);
}
#define NBLOCKS 1024
#define NTHREADS 1024
#define BENCHCOUNT 1000
template<typename Lambda>
void runBench(Lambda arg, int* rp, const char* name)
{
// "preheat" the GPU
for (int i = 0; i < 100; i++)
child<<<dim3(NBLOCKS,1,1), dim3(NTHREADS,1,1)>>>(rp);
cudaEvent_t start, stop;
float rtime = 0.0f;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
for (int i = 0; i < BENCHCOUNT; i++)
arg();
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&rtime, start, stop);
printf("=== %s ===\n", name);
printf("time: %f ms\n", rtime/BENCHCOUNT); fflush(stdout);
cudaEventDestroy(start);
cudaEventDestroy(stop);
cudaDeviceSynchronize();
}
int main(int argc, char **argv)
{
host_vector<int> hv(1);
hv[0] = 0xAABBCCDD;
device_vector<int> dv(1);
dv = hv;
int* rp = thrust::raw_pointer_cast(&dv[0]);
auto benchFun = [&](void) {
child<<<dim3(NBLOCKS,1,1), dim3(NTHREADS,1,1)>>>(rp); };
runBench(benchFun, rp, "Single kernel launch");
auto benchFun2 = [&](void) {
for (int j = 0; j < 2; j++)
child<<<dim3(NBLOCKS,1,1), dim3(NTHREADS,1,1)>>>(rp);
};
runBench(benchFun2, rp, "2x sequential kernel launch");
auto benchFunDP = [&](void) {
parent<<<dim3(NBLOCKS,1,1), dim3(NTHREADS,1,1)>>>(rp); };
runBench(benchFunDP, rp, "Nested kernel launch");
}
至build/run:
- Copy/paste 上面的代码到 dpar.cu
- nvcc -arch=sm_52 -rdc=true -std=c++11 -lcudadevrt -o dpar dpar.cu
- ./dpar
在我的 p5000 笔记本电脑上打印:
=== 单内核启动 ===
时间:0.014297 毫秒
=== 2x 顺序内核启动 ===
时间:0.030468 毫秒
=== 嵌套内核启动 ===
时间:0.083820 毫秒
所以开销很大..在我的例子中看起来是 43 微秒。
我们在使用 CUDA 动态并行时遇到性能问题。目前,CDP 的执行速度至少比传统方法慢 3 倍。 我们做了最简单的可重现代码来展示这个问题,就是把一个数组的所有元素的值都增加+1。即
a[0,0,0,0,0,0,0,.....,0] --> kernel +1 --> a[1,1,1,1,1,1,1,1,1]
这个简单示例的目的只是为了看看 CDP 是否可以像其他的一样执行,或者是否有严重的开销。
代码在这里:
#include <stdio.h>
#include <cuda.h>
#define BLOCKSIZE 512
__global__ void kernel_parent(int *a, int n, int N);
__global__ void kernel_simple(int *a, int n, int N, int offset);
// N is the total array size
// n is the worksize for a kernel (one third of N)
__global__ void kernel_parent(int *a, int n, int N){
cudaStream_t s1, s2;
cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if(tid == 0){
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (n + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
kernel_simple<<< grid, block, 0, s1 >>> (a, n, N, n);
kernel_simple<<< grid, block, 0, s2 >>> (a, n, N, 2*n);
}
a[tid] += 1;
}
__global__ void kernel_simple(int *a, int n, int N, int offset){
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int pos = tid + offset;
if(pos < N){
a[pos] += 1;
}
}
int main(int argc, char **argv){
if(argc != 3){
fprintf(stderr, "run as ./prog n method\nn multiple of 32 eg: 1024, 1048576 (1024^2), 4194304 (2048^2), 16777216 (4096^2)\nmethod:\n0 (traditional) \n1 (dynamic parallelism)\n2 (three kernels using unique streams)\n");
exit(EXIT_FAILURE);
}
int N = atoi(argv[1])*3;
int method = atoi(argv[2]);
// init array as 0
int *ah, *ad;
printf("genarray of 3*N = %i.......", N); fflush(stdout);
ah = (int*)malloc(sizeof(int)*N);
for(int i=0; i<N; ++i){
ah[i] = 0;
}
printf("done\n"); fflush(stdout);
// malloc and copy array to gpu
printf("cudaMemcpy:Host->Device..........", N); fflush(stdout);
cudaMalloc(&ad, sizeof(int)*N);
cudaMemcpy(ad, ah, sizeof(int)*N, cudaMemcpyHostToDevice);
printf("done\n"); fflush(stdout);
// kernel launch (timed)
cudaStream_t s1, s2, s3;
cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&s3, cudaStreamNonBlocking);
cudaEvent_t start, stop;
float rtime = 0.0f;
cudaEventCreate(&start);
cudaEventCreate(&stop);
printf("Kernel...........................", N); fflush(stdout);
if(method == 0){
// CLASSIC KERNEL LAUNCH
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (N + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
cudaEventRecord(start, 0);
kernel_simple<<< grid, block >>> (ad, N, N, 0);
cudaDeviceSynchronize();
cudaEventRecord(stop, 0);
}
else if(method == 1){
// DYNAMIC PARALLELISM
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (N/3 + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
cudaEventRecord(start, 0);
kernel_parent<<< grid, block, 0, s1 >>> (ad, N/3, N);
cudaDeviceSynchronize();
cudaEventRecord(stop, 0);
}
else{
// THREE CONCURRENT KERNEL LAUNCHES USING STREAMS
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (N/3 + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
cudaEventRecord(start, 0);
kernel_simple<<< grid, block, 0, s1 >>> (ad, N/3, N, 0);
kernel_simple<<< grid, block, 0, s2 >>> (ad, N/3, N, N/3);
kernel_simple<<< grid, block, 0, s3 >>> (ad, N/3, N, 2*(N/3));
cudaDeviceSynchronize();
cudaEventRecord(stop, 0);
}
printf("done\n"); fflush(stdout);
printf("cudaMemcpy:Device->Host..........", N); fflush(stdout);
cudaMemcpy(ah, ad, sizeof(int)*N, cudaMemcpyDeviceToHost);
printf("done\n"); fflush(stdout);
printf("checking result.................."); fflush(stdout);
for(int i=0; i<N; ++i){
if(ah[i] != 1){
fprintf(stderr, "bad element: a[%i] = %i\n", i, ah[i]);
exit(EXIT_FAILURE);
}
}
printf("done\n"); fflush(stdout);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&rtime, start, stop);
printf("rtime: %f ms\n", rtime); fflush(stdout);
return EXIT_SUCCESS;
}
可以用
编译nvcc -arch=sm_35 -rdc=true -lineinfo -lcudadevrt -use_fast_math main.cu -o prog
这个例子可以用3种方法计算结果:
- 简单内核:只有一个经典内核 +1 遍历数组。
- 动态并行:从 main() 调用一个 parent 内核,它在范围 [0,N/3) 上执行 +1,并且还调用两个 child 内核。第一个 child 在 [N/3, 2*N/3) 范围内执行 +1),第二个 child 在 [2*N/3,N) 范围内. Childs 使用不同的流启动,因此它们可以并发。
- 来自主机的三个流:这个只是从 main() 启动三个 non-blocking 流,数组的三分之一一个。
我得到以下方法 0(简单内核)的配置文件:
➜ simple-cdp git:(master) ✗ ./prog 16777216 0
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 1.140928 ms
➜ simple-cdp git:(master) ✗ ./prog 16777216 1
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 5.790048 ms
➜ simple-cdp git:(master) ✗ ./prog 16777216 2
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 1.011936 ms
从图片中可以看出,主要问题是在动态并行方法中,parent 内核在两个 child 内核之后花费过多的时间来关闭已经完成,这就是让它花费 3 倍或 4 倍的原因。 即使考虑最坏的情况,如果所有三个内核(parent 和两个 childs)运行 串行,它应该少得多。即,每个内核有 N/3 的工作量,因此整个 parent 内核应该占用大约 3 child 个内核,这要少得多。 有办法解决这个问题吗?
编辑:child 内核以及方法 2 的序列化现象已由 Robert Crovella 在评论中进行了解释(非常感谢)。内核连续执行 运行 的事实不会使粗体文本中描述的问题无效(至少现在不是)。
对设备运行时的调用是 "expensive",就像对主机运行时的调用是昂贵的一样。在这种情况下,您似乎正在调用设备运行时来为每个线程创建流,即使此代码只需要它们用于线程 0。
通过修改您的代码以仅请求线程 0 的流创建,我们可以在我们为子内核启动使用单独的流的情况和我们没有为子内核启动使用单独的流的情况之间产生时间奇偶校验子内核启动:
$ cat t370.cu
#include <stdio.h>
#define BLOCKSIZE 512
__global__ void kernel_parent(int *a, int n, int N);
__global__ void kernel_simple(int *a, int n, int N, int offset);
// N is the total array size
// n is the worksize for a kernel (one third of N)
__global__ void kernel_parent(int *a, int n, int N){
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if(tid == 0){
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (n + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
#ifdef USE_STREAMS
cudaStream_t s1, s2;
cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
kernel_simple<<< grid, block, 0, s1 >>> (a, n, N, n);
kernel_simple<<< grid, block, 0, s2 >>> (a, n, N, 2*n);
#else
kernel_simple<<< grid, block >>> (a, n, N, n);
kernel_simple<<< grid, block >>> (a, n, N, 2*n);
#endif
// these next 2 lines add noticeably to the overall timing
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) printf("oops1: %d\n", (int)err);
}
a[tid] += 1;
}
__global__ void kernel_simple(int *a, int n, int N, int offset){
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int pos = tid + offset;
if(pos < N){
a[pos] += 1;
}
}
int main(int argc, char **argv){
if(argc != 3){
fprintf(stderr, "run as ./prog n method\nn multiple of 32 eg: 1024, 1048576 (1024^2), 4194304 (2048^2), 16777216 (4096^2)\nmethod:\n0 (traditional) \n1 (dynamic parallelism)\n2 (three kernels using unique streams)\n");
exit(EXIT_FAILURE);
}
int N = atoi(argv[1])*3;
int method = atoi(argv[2]);
// init array as 0
int *ah, *ad;
printf("genarray of 3*N = %i.......", N); fflush(stdout);
ah = (int*)malloc(sizeof(int)*N);
for(int i=0; i<N; ++i){
ah[i] = 0;
}
printf("done\n"); fflush(stdout);
// malloc and copy array to gpu
printf("cudaMemcpy:Host->Device..........", N); fflush(stdout);
cudaMalloc(&ad, sizeof(int)*N);
cudaMemcpy(ad, ah, sizeof(int)*N, cudaMemcpyHostToDevice);
printf("done\n"); fflush(stdout);
// kernel launch (timed)
cudaStream_t s1, s2, s3;
cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&s3, cudaStreamNonBlocking);
cudaEvent_t start, stop;
float rtime = 0.0f;
cudaEventCreate(&start);
cudaEventCreate(&stop);
printf("Kernel...........................", N); fflush(stdout);
if(method == 0){
// CLASSIC KERNEL LAUNCH
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (N + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
cudaEventRecord(start, 0);
kernel_simple<<< grid, block >>> (ad, N, N, 0);
cudaDeviceSynchronize();
cudaEventRecord(stop, 0);
}
else if(method == 1){
// DYNAMIC PARALLELISM
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (N/3 + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
cudaEventRecord(start, 0);
kernel_parent<<< grid, block, 0, s1 >>> (ad, N/3, N);
cudaDeviceSynchronize();
cudaEventRecord(stop, 0);
}
else{
// THREE CONCURRENT KERNEL LAUNCHES USING STREAMS
dim3 block(BLOCKSIZE, 1, 1);
dim3 grid( (N/3 + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
cudaEventRecord(start, 0);
kernel_simple<<< grid, block, 0, s1 >>> (ad, N/3, N, 0);
kernel_simple<<< grid, block, 0, s2 >>> (ad, N/3, N, N/3);
kernel_simple<<< grid, block, 0, s3 >>> (ad, N/3, N, 2*(N/3));
cudaDeviceSynchronize();
cudaEventRecord(stop, 0);
}
printf("done\n"); fflush(stdout);
printf("cudaMemcpy:Device->Host..........", N); fflush(stdout);
cudaMemcpy(ah, ad, sizeof(int)*N, cudaMemcpyDeviceToHost);
printf("done\n"); fflush(stdout);
printf("checking result.................."); fflush(stdout);
for(int i=0; i<N; ++i){
if(ah[i] != 1){
fprintf(stderr, "bad element: a[%i] = %i\n", i, ah[i]);
exit(EXIT_FAILURE);
}
}
printf("done\n"); fflush(stdout);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&rtime, start, stop);
printf("rtime: %f ms\n", rtime); fflush(stdout);
return EXIT_SUCCESS;
}
$ nvcc -arch=sm_52 -rdc=true -lcudadevrt -o t370 t370.cu
$ ./t370 16777216 1
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 6.925632 ms
$ nvcc -arch=sm_52 -rdc=true -lcudadevrt -o t370 t370.cu -DUSE_STREAMS
$ ./t370 16777216 1
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 6.673568 ms
$
虽然没有包含在上面的测试输出中,但根据我的测试,这也将 CUDA 动态并行 (CDP) 案例 (1
) 带入 "approximate parity" 和非 CDP 案例 ( 0
、2
)。请注意,我们可以通过放弃在父内核(我添加到您的代码中)中对 cudaGetLastError()
的调用,将上述时间缩短约 1 毫秒(!)。
#include <stdio.h>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
using thrust::host_vector;
using thrust::device_vector;
#define BLOCKSIZE 512
__global__ void child(int* a)
{
if (threadIdx.x == 0 && blockIdx.x == 0)
a[0]++;
}
__global__ void parent(int* a)
{
if (threadIdx.x == 0 && blockIdx.x == 0)
child<<<gridDim, blockDim>>>(a);
}
#define NBLOCKS 1024
#define NTHREADS 1024
#define BENCHCOUNT 1000
template<typename Lambda>
void runBench(Lambda arg, int* rp, const char* name)
{
// "preheat" the GPU
for (int i = 0; i < 100; i++)
child<<<dim3(NBLOCKS,1,1), dim3(NTHREADS,1,1)>>>(rp);
cudaEvent_t start, stop;
float rtime = 0.0f;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
for (int i = 0; i < BENCHCOUNT; i++)
arg();
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&rtime, start, stop);
printf("=== %s ===\n", name);
printf("time: %f ms\n", rtime/BENCHCOUNT); fflush(stdout);
cudaEventDestroy(start);
cudaEventDestroy(stop);
cudaDeviceSynchronize();
}
int main(int argc, char **argv)
{
host_vector<int> hv(1);
hv[0] = 0xAABBCCDD;
device_vector<int> dv(1);
dv = hv;
int* rp = thrust::raw_pointer_cast(&dv[0]);
auto benchFun = [&](void) {
child<<<dim3(NBLOCKS,1,1), dim3(NTHREADS,1,1)>>>(rp); };
runBench(benchFun, rp, "Single kernel launch");
auto benchFun2 = [&](void) {
for (int j = 0; j < 2; j++)
child<<<dim3(NBLOCKS,1,1), dim3(NTHREADS,1,1)>>>(rp);
};
runBench(benchFun2, rp, "2x sequential kernel launch");
auto benchFunDP = [&](void) {
parent<<<dim3(NBLOCKS,1,1), dim3(NTHREADS,1,1)>>>(rp); };
runBench(benchFunDP, rp, "Nested kernel launch");
}
至build/run:
- Copy/paste 上面的代码到 dpar.cu
- nvcc -arch=sm_52 -rdc=true -std=c++11 -lcudadevrt -o dpar dpar.cu
- ./dpar
在我的 p5000 笔记本电脑上打印:
=== 单内核启动 ===
时间:0.014297 毫秒
=== 2x 顺序内核启动 ===
时间:0.030468 毫秒
=== 嵌套内核启动 ===
时间:0.083820 毫秒
所以开销很大..在我的例子中看起来是 43 微秒。