Tensorflow,预测值概率(ROI)
Tensorflow, probability of predicted value (ROI)
我遇到了同样的问题,Tensorflow, probability of predicted value? 但我使用预测 2,但我不知道如何打印预测的百分比(置信水平)。我的问题是,我可以在我的代码中重用您的代码(或其中的一部分)吗?或者如何使用pedict_proba? (我是 python 的新人,我需要很大的帮助)。那是我的代码:
(MAIN) This one activate the predict 2 :
import os
import sys
import predict_2
import glob
import numpy as np
import subprocess
from subprocess import call
from dask.dataframe.tests.test_rolling import idx
from sympy.tensor.indexed import Idx
import shutil
import tensorflow as tf
import keras.models
from keras.models import Sequential
from dask.array.learn import predict
x = [i[2] for i in os.walk('C:\Users\bob\Desktop\Bonifici\Files\num\')]
y=[]
for t in x:
for f in t:
y.append(f)
path = ('C:\Users\bob\Desktop\Bonifici\Files\num\')
i=0
idx = 0
nlist = []
for i in y:
test = subprocess.check_output('python predict_2.py ' + path + str(y[idx]),shell=True).strip()
idx+=1
print(test)
nlist.append(test)
print(nlist)
# unisce i file txt
idx=0
with open('C:\Users\bob\Desktop\bonifici\Files\CAUSALE.txt', "wb") as outfile:
for f in nlist:
outfile.write(nlist[idx])
idx+=1
outfile.close()
This is the predict:
# import modules
import sys
import tensorflow as tf
from PIL import Image, ImageFilter
from PIL import Image as PImage
import os
from os import listdir
import warnings
import math
#TOGLIE WARNING INERENTI ALLA CPU
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
def predictint(imvalue):
# Define the model (same as when creating the model file)
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init_op)
saver.restore(sess, "model2.ckpt")
# print ("Model restored.")
prediction = tf.argmax(y_conv, 1)
return prediction.eval(feed_dict={x: [imvalue], keep_prob: 1.0}, session=sess)
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=PendingDeprecationWarning)
def imageprepare(argv):
im = Image.open(argv).convert('L')
width = float(im.size[0])
height = float(im.size[1])
newImage = Image.new('L', (28, 28), (255)) # creates white canvas of 28x28 pixels
if width > height: # check which dimension is bigger
# Width is bigger. Width becomes 20 pixels.
nheight = int(round((20.0 / width * height), 0)) # resize height according to ratio width
if (nheight == 0): # rare case but minimum is 1 pixel
nheigth = 1
# resize and sharpen
img = im.resize((20, nheight), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wtop = int(round(((28 - nheight) / 2), 0)) # caculate horizontal pozition
newImage.paste(img, (4, wtop)) # paste resized image on white canvas
else:
# Height is bigger. Heigth becomes 20 pixels.
nwidth = int(round((20.0 / height * width), 0)) # resize width according to ratio height
if (nwidth == 0): # rare case but minimum is 1 pixel
nwidth = 1
# resize and sharpen
img = im.resize((nwidth, 20), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wleft = int(round(((28 - nwidth) / 2), 0)) # caculate vertical pozition
newImage.paste(img, (wleft, 4)) # paste resized image on white canvas
# newImage.save("sample.png")
tv = list(newImage.getdata()) # get pixel values
# normalize pixels to 0 and 1. 0 is pure white, 1 is pure black.
tva = [(255 - x) * 1.0 / 255.0 for x in tv]
return tva
# print(tva)
def main(argv):
imvalue = imageprepare(argv)
predint = predictint(imvalue)
print (predint[0]) # first value in list
if __name__ == "__main__":
main(sys.argv[1])
line prediction = tf.argmax(y_conv, 1)
之后。添加以下代码
probs = tf.nn.softmax(y_conv)
probArray = sess.run(probs, feed_dict={x: [imvalue] })
prob_value = probArray[0][prediction.take(0)]
print(prob_value)
这样你就可以在tensorflow中计算预测概率了。
我也用过这个脚本,但遇到了同样的问题。我用这段代码解决了它:
probabilities=y_conv
prob = probabilities.eval(feed_dict={x: [imvalue], keep_prob: 1.0}, session=sess)
probstr = str(prob)
这是给你这样的百分比:0,000007 或 0,12456,ecc。
数字'0,12456'表示你有12%的认可度。
我遇到了同样的问题,Tensorflow, probability of predicted value? 但我使用预测 2,但我不知道如何打印预测的百分比(置信水平)。我的问题是,我可以在我的代码中重用您的代码(或其中的一部分)吗?或者如何使用pedict_proba? (我是 python 的新人,我需要很大的帮助)。那是我的代码:
(MAIN) This one activate the predict 2 :
import os
import sys
import predict_2
import glob
import numpy as np
import subprocess
from subprocess import call
from dask.dataframe.tests.test_rolling import idx
from sympy.tensor.indexed import Idx
import shutil
import tensorflow as tf
import keras.models
from keras.models import Sequential
from dask.array.learn import predict
x = [i[2] for i in os.walk('C:\Users\bob\Desktop\Bonifici\Files\num\')]
y=[]
for t in x:
for f in t:
y.append(f)
path = ('C:\Users\bob\Desktop\Bonifici\Files\num\')
i=0
idx = 0
nlist = []
for i in y:
test = subprocess.check_output('python predict_2.py ' + path + str(y[idx]),shell=True).strip()
idx+=1
print(test)
nlist.append(test)
print(nlist)
# unisce i file txt
idx=0
with open('C:\Users\bob\Desktop\bonifici\Files\CAUSALE.txt', "wb") as outfile:
for f in nlist:
outfile.write(nlist[idx])
idx+=1
outfile.close()
This is the predict:
# import modules
import sys
import tensorflow as tf
from PIL import Image, ImageFilter
from PIL import Image as PImage
import os
from os import listdir
import warnings
import math
#TOGLIE WARNING INERENTI ALLA CPU
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
def predictint(imvalue):
# Define the model (same as when creating the model file)
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init_op)
saver.restore(sess, "model2.ckpt")
# print ("Model restored.")
prediction = tf.argmax(y_conv, 1)
return prediction.eval(feed_dict={x: [imvalue], keep_prob: 1.0}, session=sess)
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=PendingDeprecationWarning)
def imageprepare(argv):
im = Image.open(argv).convert('L')
width = float(im.size[0])
height = float(im.size[1])
newImage = Image.new('L', (28, 28), (255)) # creates white canvas of 28x28 pixels
if width > height: # check which dimension is bigger
# Width is bigger. Width becomes 20 pixels.
nheight = int(round((20.0 / width * height), 0)) # resize height according to ratio width
if (nheight == 0): # rare case but minimum is 1 pixel
nheigth = 1
# resize and sharpen
img = im.resize((20, nheight), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wtop = int(round(((28 - nheight) / 2), 0)) # caculate horizontal pozition
newImage.paste(img, (4, wtop)) # paste resized image on white canvas
else:
# Height is bigger. Heigth becomes 20 pixels.
nwidth = int(round((20.0 / height * width), 0)) # resize width according to ratio height
if (nwidth == 0): # rare case but minimum is 1 pixel
nwidth = 1
# resize and sharpen
img = im.resize((nwidth, 20), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wleft = int(round(((28 - nwidth) / 2), 0)) # caculate vertical pozition
newImage.paste(img, (wleft, 4)) # paste resized image on white canvas
# newImage.save("sample.png")
tv = list(newImage.getdata()) # get pixel values
# normalize pixels to 0 and 1. 0 is pure white, 1 is pure black.
tva = [(255 - x) * 1.0 / 255.0 for x in tv]
return tva
# print(tva)
def main(argv):
imvalue = imageprepare(argv)
predint = predictint(imvalue)
print (predint[0]) # first value in list
if __name__ == "__main__":
main(sys.argv[1])
line prediction = tf.argmax(y_conv, 1)
之后。添加以下代码
probs = tf.nn.softmax(y_conv)
probArray = sess.run(probs, feed_dict={x: [imvalue] })
prob_value = probArray[0][prediction.take(0)]
print(prob_value)
这样你就可以在tensorflow中计算预测概率了。
我也用过这个脚本,但遇到了同样的问题。我用这段代码解决了它:
probabilities=y_conv
prob = probabilities.eval(feed_dict={x: [imvalue], keep_prob: 1.0}, session=sess)
probstr = str(prob)
这是给你这样的百分比:0,000007 或 0,12456,ecc。 数字'0,12456'表示你有12%的认可度。