如何在 Spark/Scala 中显示预测、标签和数据框列?

How do I display predictions, labels and dataframe column in Spark/Scala?

我正在 Spark/Scala 中执行朴素贝叶斯分类。好像没问题,代码是:

import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.ml.feature.StringIndexer

val dfLemma2 = dfLemma.withColumn("racist", 'racist.cast("String"))

val indexer = new StringIndexer().setInputCol("racist").setOutputCol("indexracist")
val indexed = indexer.fit(dfLemma2).transform(dfLemma2)
indexed.show()


val hashingTF = new HashingTF()
  .setInputCol("lemma").setOutputCol("rawFeatures").setNumFeatures(20)
val featurizedData = hashingTF.transform(indexed)

val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
val idfModel = idf.fit(featurizedData)
val rescaledData = idfModel.transform(featurizedData)
rescaledData.select("features", "indexracist").take(3).foreach(println)
val changedTypedf = rescaledData.withColumn("indexracist", 'indexracist.cast("double"))
changedTypedf.show()

// val labeled = changedTypedf.map(row => LabeledPoint(row(0), row.getAs[Vector](4)))

val labeled = changedTypedf.select("indexracist","features").rdd.map(row => LabeledPoint(
   row.getAs[Double]("indexracist"),
   org.apache.spark.mllib.linalg.Vectors.fromML(row.getAs[org.apache.spark.ml.linalg.SparseVector]("features"))
))


import org.apache.spark.mllib.classification.{NaiveBayes, NaiveBayesModel}
import org.apache.spark.mllib.util.MLUtils
    // Split data into training (60%) and test (40%).
    val Array(training, test) = labeled.randomSplit(Array(0.6, 0.4))

    val model = NaiveBayes.train(training, lambda = 1.0, modelType = "multinomial")

val predictionAndLabel = test.map(p => (model.predict(p.features), p.label))    

predictionAndLabel.take(100)

这输出:

res330: Array[(Double, Double)] = Array((0.0,0.0), (0.0,0.0), (0.0,0.0), (0.0,0.0),

我假设这是一个(预测,标签)对数组。 我想输出的是这些对连接到原始文本,这是训练数据框中称为引理的列,所以类似于:

--------------------------------------------------
| Prediction | Label      | lemma                |
--------------------------------------------------
|    0.0     |    0.0     |[cakes, are, good]    |
|    0.0     |    0.0     |[jim, says, hi]       |
|    1.0     |    1.0     |[shut, the, dam, door]|
...
--------------------------------------------------

由于我的 Spark/Scala 很弱,因此请多多指教。

编辑,文本列在 'indexed' 中称为 'lemma':

+------+-------------------------------------------------------------------------------------------------------------------+
|racist|lemma                                                                                                              |
+------+-------------------------------------------------------------------------------------------------------------------+
|true  |[@cllrwood, abbo, @ukip, britainfirst]                                                                             |
|false |[objectofthemonth, george, lansbury, bust, jussuf, abbo, amp, fascinating, insight, son, jerome]                   |
|false |[nowplay, one, night, stand, van, brave, @bbraveofficial, bbravesquad, abbo, safe]                                 |
|false |[@mahesh, weet, son, satyamurthy, kante, abbo, chana, better, aaamovie]                                            |

您只需转换您的数据并按如下所示显示它们:

val predictions = model.transform(test)
predictions.show()

尝试使用 ml 包而不是 mllib 包。例如参考 https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/ml/NaiveBayesExample.scala

import org.apache.spark.ml.classification.NaiveBayes
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator

import org.apache.spark.sql.SparkSession

object NaiveBayesExample {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("NaiveBayesExample")
      .getOrCreate()


    // Load the data stored in LIBSVM format as a DataFrame.
    val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

    // Split the data into training and test sets (30% held out for testing)
    val Array(trainingData, testData) = data.randomSplit(Array(0.6, 0.4))

    // Train a NaiveBayes model.
    val model = new NaiveBayes()
      .fit(trainingData)

    // Select example rows to display.
    val predictions = model.transform(testData)
    predictions.show()

    // Select (prediction, true label) and compute test error
    val evaluator = new MulticlassClassificationEvaluator()
      .setLabelCol("label")
      .setPredictionCol("prediction")
      .setMetricName("accuracy")
    val accuracy = evaluator.evaluate(predictions)
    println("Test set accuracy = " + accuracy)


    spark.stop()
  }
}

在选择要显示的输出列时,尝试也包括 "lemma" 列,以便它与标签和功能列一起写入。

详情请参考。这个post和你的问题有点相似,看看是否有帮助

正如一些答案所说:建议您使用 ml 包而不是 mllib 包,因为 spark 2.0

使用 ml 包重写代码后,问题的答案将非常简单:只需选择正确的列即可满足您的需求

import org.apache.spark.ml.feature.{HashingTF, IDF}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.NaiveBayes
import org.apache.spark.ml.feature.{VectorAssembler, StringIndexer}

val dfLemma2 = dfLemma.withColumn("racist", 'racist.cast("String"))

val indexer = new StringIndexer().setInputCol("racist").setOutputCol("indexracist")

val hashingTF = new HashingTF()
  .setInputCol("lemma")
  .setOutputCol("rawFeatures")
  .setNumFeatures(20)

val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")

val naiveBayes =
  new NaiveBayes().setLabelCol("indexracist").setFeaturesCol("features").setModelType("multinomial").setSmoothing(1.0)

val pipeline = new Pipeline().setStages(Array(indexer, hashingTF, idf, naiveBayes))

val Array(training, test) = dfLemma2.randomSplit(Array(0.6, 0.4))

val model = pipeline.fit(training)

val predictionAndLabel = model.transform(test).select('Prediction, 'racist, 'indexracist, 'lemma)

predictionAndLabel.take(100)

希望对您有所帮助,否则请评论您的问题

我们必须使用管道来获取除预测列之外的训练列