pandas 数据框中的组均值差异?

Difference to group mean in a pandas data frame?

让我们假设我计算在特定时间段内人们 (id) 吃了多少橘子 (Orange) 和苹果 (Apple)。我也知道他们是年轻还是年老(group)。 pandas 数据框可能如下所示:

df = pd.DataFrame({'id' : ['1','2','3','7'],
                   'group' : ['Young', 'Young', 'Old', 'Old'],
                       'Apple' : [7,2,5,4],
                       'Orange' : [3,6,4,4],
                       })

我们可以使用 groupby() 轻松计算均值。例如:

df.Apple.groupby(df.group).mean()

产出

Old      4.5
Young    4.5

但是,我想知道消耗的苹果和橙子的数量与每个人的群体平均值有多少差异?

即输出应该是

df = pd.DataFrame({'id' : ['1','2','3','7'],
                   'group' : ['Young', 'Young', 'Old', 'Old'],
                       'Apple' : [7,2,5,4],
                       'Orange' : [3,6,4,4],
                       'Apple Difference' : [2.5, -2.5, 0.5, -0.5],
                       })

有没有办法用 pandas/numpy 做到这一点?抱歉这个摇滚问题 Best /R

你需要transform for mean with same length as df and substract by sub:

print (df.groupby('group')['Apple'].transform('mean'))
0    4.5
1    4.5
2    4.5
3    4.5
Name: Apple, dtype: float64

df = pd.DataFrame({'id' : ['1','2','3','7'],
                   'group' : ['Young', 'Young', 'Old', 'Old'],
                       'Apple' : [7,2,5,4],
                       'Orange' : [3,6,4,4],
                       })
df['Apple Difference'] = df['Apple'].sub(df.groupby('group')['Apple'].transform('mean'))
print (df)
   Apple  Orange  group id  Apple Difference
0      7       3  Young  1               2.5
1      2       6  Young  2              -2.5
2      5       4    Old  3               0.5
3      4       4    Old  7              -0.5