k-means 中的特征权重

Weights of features in k-means

我有一组想要聚类的维基百科文本。

代码如下:

import pandas as pd                                             
import numpy as np                                             
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans

#parameters
maximum_features = 1000000
max_intera = 300

#load text file
wiki = pd.read_csv('people_wiki.csv')

#TF-IDF vectorization
vectorizer = TfidfVectorizer(max_features=maximum_features, norm = 'l2', stop_words='english')
tfidf = vectorizer.fit_transform(wiki['text'])

#clustering
kmeans = KMeans(n_clusters=3, random_state=0, init='k-means++', max_iter = max_intera).fit(tfidf)

我想知道每个特征的权重,如图所示(她0.025她:0.017 .....):

总而言之:我想要每个特征(词)的权重并呈现 5 个更相关。

文件 'people_wiki.csv' 在这里:

https://ufile.io/udg1y

尝试使用此解决方案:

print(tfidf.idf_)