Pandas:聚合后加入分组键

Pandas: join on grouping keys after aggregation

我有什么

我有这样一个 pandas 框架:

df1 = pd.DataFrame({
    'date': ['31-05-2017', '31-05-2017', '31-05-2017', '31-05-2017', '01-06-2017', '01-06-2017'],
    'tag':     ['A', 'B', 'B', 'B', 'A', 'A'],
    'metric1': [0, 0, 0, 1, 1, 1],
    'metric2': [0, 1, 1, 0, 1, 0]
})


df2 = pd.DataFrame({
    'date': ['31-05-2017', '31-05-2017', '01-06-2017'],
    'tag':     ['A', 'B', 'A'],
    'metric3': [25, 3, 7,]
})

我想要的

1) 我想对 datetag

的每个组合求和 metricmetric_2

2) 计算 1metric_2

中的条目百分比

3) 将分组的 df1 与 df2 合并,这样我每个 datetag

都有 metric_3
date       | tag | metric1_sum | metric2_sum | metric2_percentage| metric 3
-----------|-----|-------------|-------------|-------------------|---------
31-05-2017 | A   | 0           | 0           | 0                 | 25
31-05-2017 | B   | 1           | 2           | 0.667             | 3
01-06-2017 | A   | 1           | 0           | 0.5               | 7

尝试次数

(1) 分组求和

>>> g = df1.groupby(['date', 'tag']).agg(sum)
>>> g
                metric1  metric2
date       tag                  
01-06-2017 A          2        1
31-05-2017 A          0        0
           B          1        2

(2) 计算百分比有效,但将其添加为列无效

我用了posted here的方法来计算百分比。

>>> g2 = df1.groupby(['date', 'tag']).agg({'metric2': 'sum'})
>>> g2.groupby(level=0).apply(lambda x: x/float(x.sum()))
                metric2
date       tag         
01-06-2017 A        1.0
31-05-2017 A        0.0
           B        1.0

但是,我现在如何将这个分组的 metric2 分配给我的组 g 或我的 df1 中的列 metric2_percentage

(3) 合并失败

加入小组显然行不通:

>>> pd.merge(g, df2, how='left', on=['date', 'tag'])
KeyError: 'date'

然后如何将 df1 减少到每组一行,以便我可以将其与 df2 合并?

gdate, tag 作为索引,而 merge 需要列,你需要 reset_index on g:

pd.merge(g.reset_index(), df2, how='left', on=['date', 'tag'])

或指定left_index = True:

pd.merge(g, df2, how='left', left_index=True, right_on=['date', 'tag'])

两者都给出结果(列顺序略有不同):

#         date  tag  metric1  metric2   metric3
#0  01-06-2017    A        2        1         7
#1  31-05-2017    A        0        0        25
#2  31-05-2017    B        1        2         3

这是一种替代方法,它可以减少一次连接来完成您的工作:

(df1.groupby(['date', 'tag']).apply(
        lambda g: pd.Series({'metric1_sum': g.metric1.sum(), 
                             'metric2_sum': g.metric2.sum(), 
                             'metric2_percentage': g.metric2.mean()})   
# assumed here you have only 1 and 0 in metric 2 column if not use your own lambda function
    ).reset_index().merge(df2, how='left', on=['date', 'tag']))

#         date  tag  metric1_sum    metric2_percentage  metric2_sum metric3
#0  01-06-2017    A          2.0              0.500000         1.0        7
#1  31-05-2017    A          0.0              0.000000         0.0       25
#2  31-05-2017    B          1.0              0.666667         2.0        3

使用aggmean 的 1 和 0 将与百分比相同。

cols = ['date', 'tag']
d1 = df1.groupby(cols).agg(
    dict(metric1='sum', metric2=['sum', 'mean'])
)

d1.columns = d1.columns.map('_'.join)

d1.join(df2.set_index(cols))

         date tag  metric1_sum  metric2_sum  metric2_mean  metric3
0  01-06-2017   A            2            1      0.500000        7
1  31-05-2017   A            0            0      0.000000       25
2  31-05-2017   B            1            2      0.666667        3

为了单行而过度设计

from collections import OrderedDict

df1.groupby(['date', 'tag']).agg(
    dict(metric1='sum', metric2=['sum', 'mean'])
).pipe(
    lambda d: pd.DataFrame(OrderedDict({'_'.join(k): v for k, v in d.iteritems()}))
).join(df2.set_index(['date', 'tag'])).reset_index()

         date tag  metric1_sum  metric2_sum  metric2_mean  metric3
0  01-06-2017   A            2            1      0.500000        7
1  31-05-2017   A            0            0      0.000000       25
2  31-05-2017   B            1            2      0.666667        3