在 R 中按组引导结果向量

Bootstrapping a vector of results, by group in R

问题:如何使用 boostrap 获取一组的置信区间 根据协方差矩阵的特征值计算的统计量,分别为 数据框中的每个组(因子级别)?

问题:我无法完全计算出数据 structure 我需要包含这些适合 boot 函数的结果,或者一种 "map" bootstrap over groups 并以适合绘图的形式获得置信区间的方法。

上下文: 在 heplots 包中,boxM 计算协方差矩阵相等性的 Box 的 M 检验。 有一种 plot 方法可以生成一个有用的对数决定因素图,这些决定因素进入这个 测试。此图中的置信区间基于渐近理论近似值。

> library(heplots)
> iris.boxm <- boxM(iris[, 1:4], iris[, "Species"])
> iris.boxm

        Box's M-test for Homogeneity of Covariance Matrices

data:  iris[, 1:4]
Chi-Sq (approx.) = 140.94, df = 20, p-value < 2.2e-16

> plot(iris.boxm, gplabel="Species")

plot方法也可以显示特征值的其他函数,但理论上不行 在这种情况下可以使用置信区间。

op <- par(mfrow=c(2,2), mar=c(5,4,1,1))
plot(iris.boxm, gplabel="Species", which="product")
plot(iris.boxm, gplabel="Species", which="sum")
plot(iris.boxm, gplabel="Species", which="precision")
plot(iris.boxm, gplabel="Species", which="max")
par(op)

因此,我希望能够使用 boostrap 计算这些 CI,并将它们显示在相应的图中。

我试过的:

以下是增强这些统计数据的函数,但对于总数 示例,不考虑组 (Species)。

cov_stat_fun <- function(data, indices, 
            stats=c("logdet", "prod", "sum", "precision", "max")
            ) {
    dat <- data[indices,]
    cov <- cov(dat, use="complete.obs")
    eigs <- eigen(cov)$values

    res <- c(
        "logdet" = log(det(cov)),
        "prod" = prod(eigs),
        "sum" = sum(eigs),
        "precision" = 1/ sum(1/eigs),
        "max" = max(eigs)
        )
}

boot_cov_stat <- function(data, R=500,  ...) {
    boot(data, cov_stat_fun, R=R,  ...)
}

这有效,但我需要 按组 的结果(以及总样本)

> iris.boot <- boot_cov_stat(iris[,1:4])
>
> iris.ci <- boot.ci(iris.boot)
> iris.ci
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 500 bootstrap replicates

CALL : 
boot.ci(boot.out = iris.boot)

Intervals : 
Level      Normal              Basic             Studentized     
95%   (-6.622, -5.702 )   (-6.593, -5.653 )   (-6.542, -5.438 )  

Level     Percentile            BCa          
95%   (-6.865, -5.926 )   (-6.613, -5.678 )  
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable
>

我还编写了一个函数来计算每个组的单独协方差矩阵,但我看不到如何在我的 bootstrap 函数中使用它。有人可以帮忙吗?

# calculate covariance matrices by group and pooled
covs <- function(Y, group) {
   Y <- as.matrix(Y)
   gname <- deparse(substitute(group))
   if (!is.factor(group)) group <- as.factor(as.character(group))

   valid <- complete.cases(Y, group)
   if (nrow(Y) > sum(valid)) 
      warning(paste(nrow(Y) - sum(valid)), " cases with missing data have been removed.")
   Y <- Y[valid,]
   group <- group[valid]
   nlev <- nlevels(group)
   lev <- levels(group)
   mats <- aux <- list()
   for(i in 1:nlev) {
      mats[[i]] <- cov(Y[group == lev[i], ])
   }
   names(mats) <- lev
   pooled <- cov(Y)
   c(mats, "pooled"=pooled)
}

编辑: 在一个看似相关的问题 Bootstrap by groups 中,建议通过使用 boot()strata 参数来提供答案,但没有给出这个给出的例子。 [啊:strata 论证只是确保层在 bootstrap 样本中表示与其在数据中的频率相关。]

为我的问题尝试这个,我没有进一步开悟,因为我想要得到的是 separate 每个 Species.

的置信区间
> iris.boot.strat <- boot_cov_stat(iris[,1:4], strata=iris$Species)
> 
> boot.ci(iris.boot.strat, conf=0.95, type=c("basic", "bca"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 500 bootstrap replicates

CALL : 
boot.ci(boot.out = iris.boot.strat, conf = 0.95, type = c("basic", 
    "bca"))

Intervals : 
Level      Basic                BCa          
95%   (-6.587, -5.743 )   (-6.559, -5.841 )  
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable
> 

如果我理解你的问题,你可以按如下方式运行你的bootstrap函数:

library(boot)
library(tidyverse)

# Pooled
iris.boot <- boot_cov_stat(iris[,1:4])
iris.ci <- boot.ci(iris.boot)

# By Species
boot.list = setNames(unique(iris$Species), unique(iris$Species)) %>% 
  map(function(group) {
    iris.boot = boot_cov_stat(iris[iris$Species==group, 1:4])
    boot.ci(iris.boot)
  })

# Combine pooled and by-Species results
boot.list = c(boot.list, list(Pooled=iris.ci))

boot.list
$setosa
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 500 bootstrap replicates

CALL : 
boot.ci(boot.out = iris.boot)

Intervals : 
Level      Normal              Basic             Studentized     
95%   (-13.69, -11.86 )   (-13.69, -11.79 )   (-13.52, -10.65 )  

Level     Percentile            BCa          
95%   (-14.34, -12.44 )   (-13.65, -11.99 )  
Calculations and Intervals on Original Scale
Warning : BCa Intervals used Extreme Quantiles
Some BCa intervals may be unstable

$versicolor
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 500 bootstrap replicates

CALL : 
boot.ci(boot.out = iris.boot)

Intervals : 
Level      Normal              Basic             Studentized     
95%   (-11.37,  -9.81 )   (-11.36,  -9.78 )   (-11.25,  -8.97 )  

Level     Percentile            BCa          
95%   (-11.97, -10.39 )   (-11.35, -10.09 )  
Calculations and Intervals on Original Scale
Warning : BCa Intervals used Extreme Quantiles
Some BCa intervals may be unstable

$virginica
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 500 bootstrap replicates

CALL : 
boot.ci(boot.out = iris.boot)

Intervals : 
Level      Normal              Basic             Studentized     
95%   (-9.467, -7.784 )   (-9.447, -7.804 )   (-9.328, -6.959 )  

Level     Percentile            BCa          
95%   (-10.050,  -8.407 )   ( -9.456,  -8.075 )  
Calculations and Intervals on Original Scale
Warning : BCa Intervals used Extreme Quantiles
Some BCa intervals may be unstable

$Pooled
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 500 bootstrap replicates

CALL : 
boot.ci(boot.out = iris.boot)

Intervals : 
Level      Normal              Basic             Studentized     
95%   (-6.620, -5.714 )   (-6.613, -5.715 )   (-6.556, -5.545 )  

Level     Percentile            BCa          
95%   (-6.803, -5.906 )   (-6.624, -5.779 )  
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable

我认为最好的一般答案是扩展@eipi10 的提议,使用某种方法从 bootci 对象中提取所需的置信区间。 broom 包中缺少这一点。

作为一种有启发性的替代方法,我尝试直接对 bootstrap 的结果使用 broom::tidy()。它不是(通常不对称的)置信区间,而是给出 bootstrap 估计值 statisticbiasstd.error。但是,根据我得到的结果(见下文),我怀疑 broom::tidy() 在这种情况下是否给出正确的结果。

# try just using tidy on the bootstrap results

## pooled
iris.boot <- boot_cov_stat(iris[,1:4])
iris.pooled <- tidy(iris.boot)

给予:

> iris.pooled
       term   statistic          bias    std.error
1    logdet -6.25922391 -0.0906294902 0.2469587430
2      prod  0.00191273 -0.0001120317 0.0004485317
3       sum  4.57295705 -0.0382145128 0.2861790776
4 precision  0.01692092 -0.0005047993 0.0016818910
5       max  4.22824171 -0.0329408193 0.2815648589
> 

现在,使用对 map 的另一个答案中描述的方法, 并合并:

## individual groups
boot.list2 = setNames(unique(iris$Species), unique(iris$Species)) %>% 
  map(function(group) {
    iris.boot = boot_cov_stat(iris[iris$Species==group, 1:4])
    tidy(iris.boot)
  })

# Combine pooled and by-Species results
boot.list <- c(boot.list2, list(Pooled=iris.pooled))

转换为数据框:

## transform this list to a data frame, with a group variable
result <- bind_rows(boot.list) %>% 
    mutate(group = rep(c( levels(iris$Species), "Pooled"), 5)) %>%
    arrange(term)

> result
        term     statistic          bias    std.error      group
1     logdet -1.306736e+01 -3.240621e-01 4.660334e-01     setosa
2     logdet -1.087433e+01 -2.872073e-01 3.949917e-01 versicolor
3     logdet -8.927058e+00 -2.925485e-01 4.424367e-01  virginica
4     logdet -6.259224e+00 -9.062949e-02 2.469587e-01     Pooled
5        max  2.364557e-01 -6.696719e-03 4.426305e-02     setosa
6        max  4.878739e-01 -6.798321e-03 8.662880e-02 versicolor
7        max  6.952548e-01 -6.517223e-03 1.355433e-01  virginica
8        max  4.228242e+00 -3.294082e-02 2.815649e-01     Pooled
9  precision  5.576122e-03 -5.928678e-04 8.533907e-04     Pooled
10 precision  7.338788e-03 -6.894908e-04 1.184594e-03     setosa
11 precision  1.691212e-02 -1.821494e-03 2.000718e-03 versicolor
12 precision  1.692092e-02 -5.047993e-04 1.681891e-03  virginica
13      prod  2.113088e-06 -4.158518e-07 7.850009e-07 versicolor
14      prod  1.893828e-05 -3.605691e-06 6.100376e-06  virginica
15      prod  1.327479e-04 -2.381536e-05 4.792428e-05     Pooled
16      prod  1.912730e-03 -1.120317e-04 4.485317e-04     setosa
17       sum  3.092041e-01 -1.005543e-02 4.623437e-02  virginica
18       sum  6.248245e-01 -1.238896e-02 8.536621e-02     Pooled
19       sum  8.883673e-01 -1.500578e-02 1.409230e-01     setosa
20       sum  4.572957e+00 -3.821451e-02 2.861791e-01 versicolor
> 

这给出了一些现在可以绘制的东西,据推测与原始问题中没有误差线的图相对应:

result %>% mutate(Pooled = group == "Pooled") %>%
    filter (term != "logdet") %>%
    ggplot(aes(y=statistic, x=group, color=Pooled)) +
    geom_point(size=2.5) +
    geom_errorbar(aes(ymin=statistic-2*std.error, 
                      ymax=statistic+2*std.error), width=0.4) +
    facet_wrap( ~ term, scales="free") +
    coord_flip() + guides(color=FALSE)

然而,这个"tidy plot"似乎显然是错误的。理论上说,轮询样本的结果在每种情况下都必须介于单独组的结果之间,因为它在某种意义上是对组的“凸组合”。将下面的图与原始问题中给出的图进行比较。 (有可能我这里做错了,但我看不出破绽。)