SparkR 保存 ML 模型
SparkR save ML model
如何保存一个SparkR模型并单独加载模型进行预测?
Spark 版本 2.0
# Load training data
df <- read.df("data/mllib/sample_libsvm_data.txt", source = "libsvm")
training <- df
testing <- df
# Fit a random forest classification model with spark.randomForest
model <- spark.randomForest(training, label ~ features, "classification", numTrees = 10)
# Model summary
summary(model)
### Save and Load
??
# Prediction
predictions <- predict(model, test)
head(predictions)
我相信你正在寻找read.ml(path)
and write.ml(object, path)
如何保存一个SparkR模型并单独加载模型进行预测?
Spark 版本 2.0
# Load training data
df <- read.df("data/mllib/sample_libsvm_data.txt", source = "libsvm")
training <- df
testing <- df
# Fit a random forest classification model with spark.randomForest
model <- spark.randomForest(training, label ~ features, "classification", numTrees = 10)
# Model summary
summary(model)
### Save and Load
??
# Prediction
predictions <- predict(model, test)
head(predictions)
我相信你正在寻找read.ml(path)
and write.ml(object, path)