Numpy中有built-in/easy LDU分解方法吗?
Is there a built-in/easy LDU decomposition method in Numpy?
我在 numpy.linalg.cholesky 中看到了 cholesky 分解,但找不到 LDU 分解。任何人都可以建议使用的功能吗?
Scipy 有一个 LU 分解函数:scipy.linalg.lu
. Note that this also introduces a permutation matrix P
into the mix. This answer 很好地解释了为什么会发生这种情况。
如果你特别需要LDU,那么你可以直接对U
矩阵进行归一化来提取D
。
您可以这样做:
>>> import numpy as np
>>> import scipy.linalg as la
>>> a = np.array([[2, 4, 5],
[1, 3, 2],
[4, 2, 1]])
>>> (P, L, U) = la.lu(a)
>>> P
array([[ 0., 1., 0.],
[ 0., 0., 1.],
[ 1., 0., 0.]])
>>> L
array([[ 1. , 0. , 0. ],
[ 0.5 , 1. , 0. ],
[ 0.25 , 0.83333333, 1. ]])
>>> U
array([[ 4. , 2. , 1. ],
[ 0. , 3. , 4.5],
[ 0. , 0. , -2. ]])
>>> D = np.diag(np.diag(U)) # D is just the diagonal of U
>>> U /= np.diag(U)[:, None] # Normalize rows of U
>>> P.dot(L.dot(D.dot(U))) # Check
array([[ 2., 4., 5.],
[ 1., 3., 2.],
[ 4., 2., 1.]])
试试这个:
import numpy as np
A = np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4],[1,2,3,4]])
U = np.triu(A,1)
L = np.tril(A,-1)
D = np.tril(np.triu(A))
print(A)
print(L)
print(D)
print(U)
我在 numpy.linalg.cholesky 中看到了 cholesky 分解,但找不到 LDU 分解。任何人都可以建议使用的功能吗?
Scipy 有一个 LU 分解函数:scipy.linalg.lu
. Note that this also introduces a permutation matrix P
into the mix. This answer 很好地解释了为什么会发生这种情况。
如果你特别需要LDU,那么你可以直接对U
矩阵进行归一化来提取D
。
您可以这样做:
>>> import numpy as np
>>> import scipy.linalg as la
>>> a = np.array([[2, 4, 5],
[1, 3, 2],
[4, 2, 1]])
>>> (P, L, U) = la.lu(a)
>>> P
array([[ 0., 1., 0.],
[ 0., 0., 1.],
[ 1., 0., 0.]])
>>> L
array([[ 1. , 0. , 0. ],
[ 0.5 , 1. , 0. ],
[ 0.25 , 0.83333333, 1. ]])
>>> U
array([[ 4. , 2. , 1. ],
[ 0. , 3. , 4.5],
[ 0. , 0. , -2. ]])
>>> D = np.diag(np.diag(U)) # D is just the diagonal of U
>>> U /= np.diag(U)[:, None] # Normalize rows of U
>>> P.dot(L.dot(D.dot(U))) # Check
array([[ 2., 4., 5.],
[ 1., 3., 2.],
[ 4., 2., 1.]])
试试这个:
import numpy as np
A = np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4],[1,2,3,4]])
U = np.triu(A,1)
L = np.tril(A,-1)
D = np.tril(np.triu(A))
print(A)
print(L)
print(D)
print(U)