如何在 Jupyter Notebook 或 JupyterLab 中使用破折号?

How to use dash within Jupyter notebook or JupyterLab?

是否可以在 Jupyter Notebook 中使用 dash 应用程序,而不是在浏览器中提供和查看?

我的意图是 link Jupyter notebook 中的图表,以便将鼠标悬停在一个图表上生成另一个图表所需的输入。

寻找离线情节。

假设你有一个图形(例如 fig = {'data': data, 'layout':layout} )

那么, 在 jupyter notebook 单元格中,

from plotly.offline import iplot, init_notebook_mode
init_notebook_mode()
# plot it
iplot(fig)

这将在你的 jupyter 中绘制 plotly。您甚至不必 运行 flask 服务器。

我不确定 dash 应用程序是否可以在 Jupyter notebook 中显示。但是,如果您正在寻找的是使用滑块、组合框和其他按钮,您可能会对直接来自 Jupyter 的 ipywidgets 感兴趣。

这些可以与plotly一起使用,如图here


编辑

最终似乎有通过使用 iframe 和 IPython.display.display_html() 在 Jupyter 中嵌入 dash 应用程序的解决方案。 有关详细信息,请参阅 this function and this GitHub repo

(免责声明,我帮助维护达世币)

参见 https://github.com/plotly/jupyterlab-dash。这是一个在 Jupyter 中嵌入 Dash 的 JupyterLab 扩展。

另请参阅 Dash Community Forum like the Can I run dash app in jupyter topic 中的替代解决方案。

这个问题已经有了很好的答案,但本文将直接关注:

1. 如何在 Jupyterlab 和

中使用 Dash

2. 如何 select 将鼠标悬停在另一个图形上


按照这些步骤将直接在 JupyterLab 中释放 Plotly Dash:

1.安装最新的Plotly版本

2. 使用 conda install -c plotly jupyterlab-dash

安装 JupyterLab Dash

3. 使用下面提供的代码片段启动 Dash 应用程序,其中包含基于 pandas 数据帧构建的动画,每秒扩展一次。

JupyterLab 中的 Dash 屏幕截图(下面片段中的代码)

这张图片显示了 Dash 字面意思 在 JupyterLab 中启动。突出显示的四个部分是:

1 - Cell. .ipynb 中的一个单元格,您可能已经非常熟悉了

2 - Dash。 一个“实时”dash 应用程序,它使用随机数扩展所有三个轨迹并每秒显示更新的图形。

3 - 控制台。 一个控制台,您可以在其中检查脚本中的可用元素,例如,fig.show

4 - mode. 这显示了一些真正的魔法所在:

app.run_server(mode='jupyterlab', port = 8090, dev_tools_ui=True, #debug=True,
              dev_tools_hot_reload =True, threaded=True)

您可以选择在以下位置启动 dash 应用程序:

  1. Jupyterlab,如 mode='jupyterlab'
  2. 的屏幕截图
  3. 或在一个单元格中,使用 mode='inline':

  1. 或在您的默认浏览器中使用 mode='external'

代码 1:

import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output

# code and plot setup
# settings
pd.options.plotting.backend = "plotly"

# sample dataframe of a wide format
np.random.seed(4); cols = list('abc')
X = np.random.randn(50,len(cols))  
df=pd.DataFrame(X, columns=cols)
df.iloc[0]=0;

# plotly figure
fig = df.plot(template = 'plotly_dark')

app = JupyterDash(__name__)
app.layout = html.Div([
    html.H1("Random datastream"),
            dcc.Interval(
            id='interval-component',
            interval=1*1000, # in milliseconds
            n_intervals=0
        ),
    dcc.Graph(id='graph'),
])

# Define callback to update graph
@app.callback(
    Output('graph', 'figure'),
    [Input('interval-component', "n_intervals")]
)
def streamFig(value):
    
    global df
    
    Y = np.random.randn(1,len(cols))  
    df2 = pd.DataFrame(Y, columns = cols)
    df = df.append(df2, ignore_index=True)#.reset_index()
    df.tail()
    df3=df.copy()
    df3 = df3.cumsum()
    fig = df3.plot(template = 'plotly_dark')
    #fig.show()
    return(fig)

app.run_server(mode='jupyterlab', port = 8090, dev_tools_ui=True, #debug=True,
              dev_tools_hot_reload =True, threaded=True)

但好消息还不止于此,关于:

My intention is to link graphs within a Jupyter notebook so that hovering over one graph generates the input required for another graph.

dash.plotly.com 上有一个完美的示例,可以在 Update Graphs on Hover:

段落下为您完成此操作

我对原始设置做了一些必要的更改,以便 运行 它可以在 JupyterLab 中使用。

代码片段 2 - Select 悬停图来源:

import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
import dash.dependencies

# code and plot setup
# settings
pd.options.plotting.backend = "plotly"


external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = JupyterDash(__name__, external_stylesheets=external_stylesheets)

df = pd.read_csv('https://plotly.github.io/datasets/country_indicators.csv')

available_indicators = df['Indicator Name'].unique()

app.layout = html.Div([
    html.Div([

        html.Div([
            dcc.Dropdown(
                id='crossfilter-xaxis-column',
                options=[{'label': i, 'value': i} for i in available_indicators],
                value='Fertility rate, total (births per woman)'
            ),
            dcc.RadioItems(
                id='crossfilter-xaxis-type',
                options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
                value='Linear',
                labelStyle={'display': 'inline-block'}
            )
        ],
        style={'width': '49%', 'display': 'inline-block'}),

        html.Div([
            dcc.Dropdown(
                id='crossfilter-yaxis-column',
                options=[{'label': i, 'value': i} for i in available_indicators],
                value='Life expectancy at birth, total (years)'
            ),
            dcc.RadioItems(
                id='crossfilter-yaxis-type',
                options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
                value='Linear',
                labelStyle={'display': 'inline-block'}
            )
        ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'})
    ], style={
        'borderBottom': 'thin lightgrey solid',
        'backgroundColor': 'rgb(250, 250, 250)',
        'padding': '10px 5px'
    }),

    html.Div([
        dcc.Graph(
            id='crossfilter-indicator-scatter',
            hoverData={'points': [{'customdata': 'Japan'}]}
        )
    ], style={'width': '49%', 'display': 'inline-block', 'padding': '0 20'}),
    html.Div([
        dcc.Graph(id='x-time-series'),
        dcc.Graph(id='y-time-series'),
    ], style={'display': 'inline-block', 'width': '49%'}),

    html.Div(dcc.Slider(
        id='crossfilter-year--slider',
        min=df['Year'].min(),
        max=df['Year'].max(),
        value=df['Year'].max(),
        marks={str(year): str(year) for year in df['Year'].unique()},
        step=None
    ), style={'width': '49%', 'padding': '0px 20px 20px 20px'})
])


@app.callback(
    dash.dependencies.Output('crossfilter-indicator-scatter', 'figure'),
    [dash.dependencies.Input('crossfilter-xaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-yaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-xaxis-type', 'value'),
     dash.dependencies.Input('crossfilter-yaxis-type', 'value'),
     dash.dependencies.Input('crossfilter-year--slider', 'value')])
def update_graph(xaxis_column_name, yaxis_column_name,
                 xaxis_type, yaxis_type,
                 year_value):
    dff = df[df['Year'] == year_value]

    fig = px.scatter(x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],
            y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],
            hover_name=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name']
            )

    fig.update_traces(customdata=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'])

    fig.update_xaxes(title=xaxis_column_name, type='linear' if xaxis_type == 'Linear' else 'log')

    fig.update_yaxes(title=yaxis_column_name, type='linear' if yaxis_type == 'Linear' else 'log')

    fig.update_layout(margin={'l': 40, 'b': 40, 't': 10, 'r': 0}, hovermode='closest')

    return fig


def create_time_series(dff, axis_type, title):

    fig = px.scatter(dff, x='Year', y='Value')

    fig.update_traces(mode='lines+markers')

    fig.update_xaxes(showgrid=False)

    fig.update_yaxes(type='linear' if axis_type == 'Linear' else 'log')

    fig.add_annotation(x=0, y=0.85, xanchor='left', yanchor='bottom',
                       xref='paper', yref='paper', showarrow=False, align='left',
                       bgcolor='rgba(255, 255, 255, 0.5)', text=title)

    fig.update_layout(height=225, margin={'l': 20, 'b': 30, 'r': 10, 't': 10})

    return fig


@app.callback(
    dash.dependencies.Output('x-time-series', 'figure'),
    [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'),
     dash.dependencies.Input('crossfilter-xaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-xaxis-type', 'value')])
def update_y_timeseries(hoverData, xaxis_column_name, axis_type):
    country_name = hoverData['points'][0]['customdata']
    dff = df[df['Country Name'] == country_name]
    dff = dff[dff['Indicator Name'] == xaxis_column_name]
    title = '<b>{}</b><br>{}'.format(country_name, xaxis_column_name)
    return create_time_series(dff, axis_type, title)


@app.callback(
    dash.dependencies.Output('y-time-series', 'figure'),
    [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'),
     dash.dependencies.Input('crossfilter-yaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-yaxis-type', 'value')])
def update_x_timeseries(hoverData, yaxis_column_name, axis_type):
    dff = df[df['Country Name'] == hoverData['points'][0]['customdata']]
    dff = dff[dff['Indicator Name'] == yaxis_column_name]
    return create_time_series(dff, axis_type, yaxis_column_name)


app.run_server(mode='jupyterlab', port = 8090, dev_tools_ui=True, #debug=True,
              dev_tools_hot_reload =True, threaded=True)

https://medium.com/plotly/introducing-jupyterdash-811f1f57c02e

$ pip install jupyter-dash

from jupyter_dash import JupyterDash
app = JupyterDash(__name__)
<your code>
app.run_server(mode='inline')