为什么一开始的包络曲线是错误的?
Why is the envelope curve erroneous at the beginning?
我实现了一个给出离散值包络曲线的函数。我认为可能存在错误,因为当我在某个日期对其进行测试时,我会在 post 的底部为您提供,我发现真实数据点与包络曲线之间存在差异,如图所示
from scipy.interpolate import interp1d
import numpy as np
import matplotlib.pyplot as plt
def enveloppe(s):
u_x = [0,]
u_y = [s[0],]
q_u = np.zeros(s.shape)
for k in xrange(1,len(s)-1):
if (np.sign(s[k]-s[k-1])==1) and (np.sign(s[k]-s[k+1])==1):
u_x.append(k)
u_y.append(s[k])
u_x.append(len(s)-1)
u_y.append(s[-1])
u_p = interp1d(u_x,u_y, kind = 'cubic',bounds_error = False, fill_value=0.0)
#Evaluate each model over the domain of (s)
for k in xrange(0,len(s)):
q_u[k] = u_p(k)
return q_u
fig, ax = plt.subplots()
ax.plot(S, '-o', label = 'magnitude')
ax.plot(envelope(S), '-o', label = 'enveloppe magnitude')
ax.legend()
Data S : array([ 9.12348621e-11, 6.69568658e-10, 6.55973768e-09,
1.26822485e-06, 4.50553316e-09, 5.06526113e-07,
2.96728433e-09, 2.36088205e-07, 1.90802318e-09,
1.15867354e-07, 1.18504790e-09, 5.72888034e-08,
6.98672478e-10, 2.75361324e-08, 3.82391643e-10,
1.25393143e-08, 1.96697343e-10, 5.96979943e-09,
1.27009013e-10, 4.46365555e-09, 1.31769958e-10,
4.42024233e-09, 1.42514400e-10, 4.17757107e-09,
1.41640360e-10, 3.65170558e-09, 1.29784598e-10,
2.99790514e-09, 1.11732461e-10])
我会对您的信封函数进行两次修改以获得更单调的输出
这个想法是为了避免将左端和右端隐式添加到用于构造包络的峰列表中
def enveloppe(s):
u_x = [] # do not add 0
u_y = []
q_u = np.zeros(s.shape)
for k in range(1,len(s)-1):
if (np.sign(s[k]-s[k-1])==1) and (np.sign(s[k]-s[k+1])==1):
u_x.append(k)
u_y.append(s[k])
print(u_x)
u_p = interp1d(u_x,u_y, kind = 'cubic',
bounds_error = False,
fill_value="extrapolate") # use fill_value="extrapolate"
for k in range(0,len(s)):
q_u[k] = u_p(k)
return q_u
我实现了一个给出离散值包络曲线的函数。我认为可能存在错误,因为当我在某个日期对其进行测试时,我会在 post 的底部为您提供,我发现真实数据点与包络曲线之间存在差异,如图所示
from scipy.interpolate import interp1d
import numpy as np
import matplotlib.pyplot as plt
def enveloppe(s):
u_x = [0,]
u_y = [s[0],]
q_u = np.zeros(s.shape)
for k in xrange(1,len(s)-1):
if (np.sign(s[k]-s[k-1])==1) and (np.sign(s[k]-s[k+1])==1):
u_x.append(k)
u_y.append(s[k])
u_x.append(len(s)-1)
u_y.append(s[-1])
u_p = interp1d(u_x,u_y, kind = 'cubic',bounds_error = False, fill_value=0.0)
#Evaluate each model over the domain of (s)
for k in xrange(0,len(s)):
q_u[k] = u_p(k)
return q_u
fig, ax = plt.subplots()
ax.plot(S, '-o', label = 'magnitude')
ax.plot(envelope(S), '-o', label = 'enveloppe magnitude')
ax.legend()
Data S : array([ 9.12348621e-11, 6.69568658e-10, 6.55973768e-09,
1.26822485e-06, 4.50553316e-09, 5.06526113e-07,
2.96728433e-09, 2.36088205e-07, 1.90802318e-09,
1.15867354e-07, 1.18504790e-09, 5.72888034e-08,
6.98672478e-10, 2.75361324e-08, 3.82391643e-10,
1.25393143e-08, 1.96697343e-10, 5.96979943e-09,
1.27009013e-10, 4.46365555e-09, 1.31769958e-10,
4.42024233e-09, 1.42514400e-10, 4.17757107e-09,
1.41640360e-10, 3.65170558e-09, 1.29784598e-10,
2.99790514e-09, 1.11732461e-10])
我会对您的信封函数进行两次修改以获得更单调的输出
这个想法是为了避免将左端和右端隐式添加到用于构造包络的峰列表中
def enveloppe(s):
u_x = [] # do not add 0
u_y = []
q_u = np.zeros(s.shape)
for k in range(1,len(s)-1):
if (np.sign(s[k]-s[k-1])==1) and (np.sign(s[k]-s[k+1])==1):
u_x.append(k)
u_y.append(s[k])
print(u_x)
u_p = interp1d(u_x,u_y, kind = 'cubic',
bounds_error = False,
fill_value="extrapolate") # use fill_value="extrapolate"
for k in range(0,len(s)):
q_u[k] = u_p(k)
return q_u