使用 PIL 将图像转换为特定调色板而不抖动

Convert image to specific palette using PIL without dithering

我正在尝试使用 Pillow 库(Python 图像库,PIL)将 PNG 格式的 RGB 图像转换为使用特定的索引调色板。但我想使用 "round to closest color" 方法进行转换,而不是抖动,因为图像是像素艺术,抖动会扭曲区域的轮廓并向原本平坦的区域添加噪点。

我尝试了 Image.Image.paste(),它使用了四种指定的颜色,但它产生了抖动图像:

from PIL import Image
oldimage = Image.open("oldimage.png")
palettedata = [0, 0, 0, 102, 102, 102, 176, 176, 176, 255, 255, 255]
newimage = Image.new('P', oldimage.size)
newimage.putpalette(palettedata * 64)
newimage.paste(oldimage, (0, 0) + oldimage.size)
newimage.show()    

我试过 Image.Image.quantize() pictu's answer to a similar question 中提到的,但它也产生了抖动:

from PIL import Image
palettedata = [0, 0, 0, 102, 102, 102, 176, 176, 176, 255, 255, 255]
palimage = Image.new('P', (16, 16))
palimage.putpalette(palettedata * 64)
oldimage = Image.open("School_scrollable1.png")
newimage = oldimage.quantize(palette=palimage)
newimage.show()

我尝试了 Image.Image.convert(),并且它在没有抖动的情况下转换了图像,但它包含了指定颜色以外的颜色,大概是因为它使用了网络调色板或自适应调色板

from PIL import Image
oldimage = Image.open("oldimage.png")
palettedata = [0, 0, 0, 102, 102, 102, 176, 176, 176, 255, 255, 255]
expanded_palettedata = palettedata * 64
newimage = oldimage.convert('P', dither=Image.NONE, palette=palettedata)
newimage.show()

如何在不抖动的情况下自动将图像转换为特定的调色板?我想避免处理 Python 中每个单独像素的解决方案,如 John La Rooy's answer 及其评论中所建议的那样,因为我以前的解决方案涉及在 Python 中编写的内部循环已被证明是大图像明显慢。

Pillow 6 incorporates pull request 3699,合并于 2019-03-11, 它将 dither 参数添加到普通的 quantize() 方法。 在 Pillow 6 之前,需要以下内容:

用 C 实现的 PIL 部分在 PIL._imaging 模块中,在您 from PIL import Image 之后也可以作为 Image.core 使用。 Pillow 的当前版本为每个 PIL.Image.Image 实例提供了一个名为 im 的成员,它是 ImagingCore 的一个实例,class 在 PIL._imaging 中定义。 您可以使用 help(oldimage.im) 列出其方法,但方法本身在 Python.

中未记录

ImagingCore 个对象的 convert 方法在 _imaging.c 中实现。 它需要一到三个参数并创建一个新的 ImagingCore 对象(在 _imaging.c 中称为 Imaging_Type)。

  • mode(必填):模式字符串(例如"P"
  • dither(可选,默认0):PIL传递0或1
  • paletteimage(可选):带有调色板的ImagingCore

我遇到的问题是 dist-packages/PIL/Image.py 中的 quantize() 强制 dither 参数为 1。 所以我提取了 quantize() 方法的副本并对其进行了更改。 因为它依赖于表面上私有的方法,所以它可能无法在 Pillow 的未来版本中使用。 然而,到那时,我们可以预期 Pillow pre-6 将不再使用,因为 Debian“bullseye”(2021 年年中稳定)和 Ubuntu“focal”(2020 年年中 LTS)包 Pillow 7 或更高版本。

#!/usr/bin/env python3
from PIL import Image

def quantizetopalette(silf, palette, dither=False):
    """Convert an RGB or L mode image to use a given P image's palette."""

    silf.load()

    # use palette from reference image
    palette.load()
    if palette.mode != "P":
        raise ValueError("bad mode for palette image")
    if silf.mode != "RGB" and silf.mode != "L":
        raise ValueError(
            "only RGB or L mode images can be quantized to a palette"
            )
    im = silf.im.convert("P", 1 if dither else 0, palette.im)
    # the 0 above means turn OFF dithering

    # Really old versions of Pillow (before 4.x) have _new
    # under a different name
    try:
        return silf._new(im)
    except AttributeError:
        return silf._makeself(im)

# putpalette() input is a sequence of [r, g, b, r, g, b, ...]
# The data chosen for this particular answer represent
# the four gray values in a game console's palette
palettedata = [0, 0, 0, 102, 102, 102, 176, 176, 176, 255, 255, 255]
# Fill the entire palette so that no entries in Pillow's
# default palette for P images can interfere with conversion
NUM_ENTRIES_IN_PILLOW_PALETTE = 256
num_bands = len("RGB")
num_entries_in_palettedata = len(palettedata) // num_bands
palettedata.extend(palettedata[:num_bands]
                   * (NUM_ENTRIES_IN_PILLOW_PALETTE
                      - num_entries_in_palettedata))
# Create a palette image whose size does not matter
arbitrary_size = 16, 16
palimage = Image.new('P', arbitrary_size)
palimage.putpalette(palettedata)

# Perform the conversion
oldimage = Image.open("School_scrollable1.png")
newimage = quantizetopalette(oldimage, palimage, dither=False)
newimage.show()

我采用了所有这些并使其更快,添加了注释供您理解并转换为枕头而不是 pil。基本上。

import sys
import PIL
from PIL import Image

def quantizetopalette(silf, palette, dither=False):
    """Convert an RGB or L mode image to use a given P image's palette."""

    silf.load()

    # use palette from reference image made below
    palette.load()
    im = silf.im.convert("P", 0, palette.im)
    # the 0 above means turn OFF dithering making solid colors
    return silf._new(im)

if __name__ == "__main__":
    import sys, os

for imgfn in sys.argv[1:]:
    palettedata = [ 0, 0, 0, 255, 0, 0, 255, 255, 0, 0, 255, 0, 255, 255, 255,85,255,85, 255,85,85, 255,255,85] 

#   palettedata = [ 0, 0, 0, 0,170,0, 170,0,0, 170,85,0,] # pallet 0 dark
#   palettedata = [ 0, 0, 0, 85,255,85, 255,85,85, 255,255,85]  # pallet 0 light

#   palettedata = [ 0, 0, 0, 85,255,255, 255,85,255, 255,255,255,]  #pallete 1 light
#   palettedata = [ 0, 0, 0, 0,170,170, 170,0,170, 170,170,170,] #pallete 1 dark
#   palettedata = [ 0,0,170, 0,170,170, 170,0,170, 170,170,170,] #pallete 1 dark sp

#   palettedata = [ 0, 0, 0, 0,170,170, 170,0,0, 170,170,170,] # pallet 3 dark
#   palettedata = [ 0, 0, 0, 85,255,255, 255,85,85, 255,255,255,] # pallet 3 light

#  grey  85,85,85) blue (85,85,255) green (85,255,85) cyan (85,255,255) lightred 255,85,85 magenta (255,85,255)  yellow (255,255,85) 
# black 0, 0, 0,  blue (0,0,170) darkred 170,0,0 green (0,170,0)  cyan (0,170,170)magenta (170,0,170) brown(170,85,0) light grey (170,170,170) 
#  
# below is the meat we make an image and assign it a palette
# after which it's used to quantize the input image, then that is saved 
    palimage = Image.new('P', (16, 16))
    palimage.putpalette(palettedata *32)
    oldimage = Image.open(sys.argv[1])
    oldimage = oldimage.convert("RGB")
    newimage = quantizetopalette(oldimage, palimage, dither=False)
    dirname, filename= os.path.split(imgfn)
    name, ext= os.path.splitext(filename)
    newpathname= os.path.join(dirname, "cga-%s.png" % name)
    newimage.save(newpathname)

#   palimage.putpalette(palettedata *64)  64 times 4 colors on the 256 index 4 times, == 256 colors, we made a 256 color pallet.