未知标签类型:'continuous'

Unknown label type: 'continuous'

我的队友们, 遇到问题
----------------------

   Avg.SessionLength TimeonApp  TimeonWebsite LengthofMembership Yearly Amount Spent
    0   34.497268   12.655651    39.577668     4.082621                 587.951054
    1   31.926272   11.109461    37.268959     2.664034                 392.204933
    2   33.000915   11.330278    37.110597     4.104543                 487.547505
    3   34.305557   13.717514    36.721283     3.120179                 581.852344
    4   33.330673   12.795189    37.536653     4.446308                 599.406092
    5   33.871038   12.026925    34.476878     5.493507                 637.102448
    6   32.021596   11.366348    36.683776     4.685017                 521.572175 

想申请KNN

X = df[['Avg. Session Length', 'Time on App','Time on Website', 'Length of Membership']] 
y = df['Yearly Amount Spent'] 

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, 
random_state=42) 

from sklearn.neighbors import KNeighborsClassifier 
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train,y_train)

ValueError:未知标签类型:'continuous'

Yearly Amount Spent列中的值是实数,因此它们不能作为分类问题的标签(参见here):

When doing classification in scikit-learn, y is a vector of integers or strings.

因此你得到了错误。如果要构建分类模型,则需要决定如何将它们转换为有限的标签集。

请注意,如果您只是想避免错误,您可以这样做

import numpy as np
y = np.asarray(df['Yearly Amount Spent'], dtype="|S6")

这会将 y 中的值转换为所需格式的字符串。然而,每个标签只会出现在一个样本中,因此您无法真正用这样一组标签构建有意义的模型。

我认为你实际上是在尝试进行回归而不是分类,因为你的代码看起来很像你想要预测的 每年花费的金额。在这种情况下,使用

from sklearn.neighbors import KNeighborsRegressor
knn = KNeighborsRegressor(n_neighbors=1)

相反。如果你真的有一个分类任务,比如你想分类成类 like ('yearly amount spent is low', 'yearly amount spent is high', ...),你应该将标签离散化并转换成字符串或者整数(如@Miriam Farber 所解释),根据您在这种情况下需要手动设置的阈值。