在 Spark 中区分价值和滞后
Getting difference between value and its lag in Spark
我有一个 SparkR DataFrame
,如下所示。我想创建一个 monthdiff
列,它是 dates
之间的月份,按每个 name
分组。我怎样才能做到这一点?
#Set up data frame
team <- data.frame(name = c("Thomas", "Thomas", "Thomas", "Thomas", "Bill", "Bill", "Bill"),
dates = c('2017-01-05', '2017-02-23', '2017-03-16', '2017-04-08', '2017-06-08','2017-07-24','2017-09-05'))
#Create Spark DataFrame
team <- createDataFrame(team)
#Convert dates to date type
team <- withColumn(team, 'dates', cast(team$dates, 'date'))
这是我迄今为止尝试过的方法,但都导致了错误:
team <- agg(groupBy(team, 'name'), monthdiff=c(NA, months_between(team$dates, lag(team$dates))))
team <- agg(groupBy(team, 'name'), monthdiff=months_between(team$dates, lag(team$dates)))
team <- agg(groupBy(team, 'name'), monthdiff=months_between(select(team, 'dates'), lag(select(team, 'dates'))))
预期输出:
name | dates | monthdiff
-------------------------------
Thomas |2017-01-05 | NA
Thomas |2017-02-23 | 1
Thomas |2017-03-16 | 1
Thomas |2017-04-08 | 1
Bill |2017-06-08 | NA
Bill |2017-07-24 | 1
Bill |2017-09-05 | 2
基于此,我修改了 SparkR 的代码以获得答案。
#Create 'lagdates' variable with lag of dates
window <- orderBy(windowPartitionBy("name"), team$dates)
team <- withColumn(team, 'lagdates', over(lag(team$dates), window))
#Get months_between dates and lagdates
team <- withColumn(team, 'monthdiff', round(months_between(team$dates, team$lagdates)))
name | dates | lagdates | monthdiff
------------------------------------------
Bill | 2017-06-08 |null | null
Bill | 2017-07-24 |2017-06-08 | 2
Bill | 2017-09-05 |2017-07-24 | 1
Thomas| 2017-01-05 |null | null
Thomas| 2017-02-23 |2017-01-05 | 2
Thomas| 2017-03-16 |2017-02-23 | 1
Thomas| 2017-04-08 |2017-03-16 | 1
我有一个 SparkR DataFrame
,如下所示。我想创建一个 monthdiff
列,它是 dates
之间的月份,按每个 name
分组。我怎样才能做到这一点?
#Set up data frame
team <- data.frame(name = c("Thomas", "Thomas", "Thomas", "Thomas", "Bill", "Bill", "Bill"),
dates = c('2017-01-05', '2017-02-23', '2017-03-16', '2017-04-08', '2017-06-08','2017-07-24','2017-09-05'))
#Create Spark DataFrame
team <- createDataFrame(team)
#Convert dates to date type
team <- withColumn(team, 'dates', cast(team$dates, 'date'))
这是我迄今为止尝试过的方法,但都导致了错误:
team <- agg(groupBy(team, 'name'), monthdiff=c(NA, months_between(team$dates, lag(team$dates))))
team <- agg(groupBy(team, 'name'), monthdiff=months_between(team$dates, lag(team$dates)))
team <- agg(groupBy(team, 'name'), monthdiff=months_between(select(team, 'dates'), lag(select(team, 'dates'))))
预期输出:
name | dates | monthdiff
-------------------------------
Thomas |2017-01-05 | NA
Thomas |2017-02-23 | 1
Thomas |2017-03-16 | 1
Thomas |2017-04-08 | 1
Bill |2017-06-08 | NA
Bill |2017-07-24 | 1
Bill |2017-09-05 | 2
基于此
#Create 'lagdates' variable with lag of dates
window <- orderBy(windowPartitionBy("name"), team$dates)
team <- withColumn(team, 'lagdates', over(lag(team$dates), window))
#Get months_between dates and lagdates
team <- withColumn(team, 'monthdiff', round(months_between(team$dates, team$lagdates)))
name | dates | lagdates | monthdiff
------------------------------------------
Bill | 2017-06-08 |null | null
Bill | 2017-07-24 |2017-06-08 | 2
Bill | 2017-09-05 |2017-07-24 | 1
Thomas| 2017-01-05 |null | null
Thomas| 2017-02-23 |2017-01-05 | 2
Thomas| 2017-03-16 |2017-02-23 | 1
Thomas| 2017-04-08 |2017-03-16 | 1