nlargest on groupby 具有多索引和多个聚合列
nlargest on groupby with multiindex and multiple agg column
努力将 .nlargest() 应用于我的 groupedby 数据,以便仅显示每个索引的总收入最大的 10 个[0]
Groupedby 数据如下所示:
当我 运行:
grp_data.n_largest(10,'GrossRevenue_GBP')
似乎对我不起作用,完整的代码片段如下:
tmean = lambda x :stats.trim_mean(x, 0.1)
data = data.loc[(data['YYYY'] == 2016)&(data['New_category_ID'] != 0)]
grp_data = data.groupby(['New_category','CDI_CUS_NM'])['GrossRevenue_GBP',
'OrderCount',
'% Rev',
'MOVC_GBP',
'Average order size']
.aggregate({'GrossRevenue_GBP':np.sum, 'OrderCount':np.sum,'% Rev': np.sum,'MOVC_GBP': tmean ,'Average order size': tmean })
.nlargest(10,'GrossRevenue_GBP')
grp_data['Country'] = 'EU'
key1 = grp_data.index.labels[0]
key2 = grp_data['GrossRevenue_GBP'].rank(ascending=False)
sorter = np.lexsort((key2, key1))
grp_data = grp_data.take(sorter)
grp_data = grp_data[['% Rev','GrossRevenue_GBP', 'MOVC_GBP','Average order size','OrderCount','Country']]
非常感谢您的帮助。
谢谢,
我认为您需要 groupby
第一个多索引级别并使用 nlargest
:
应用函数
grp_data = data.groupby(['New_category','CDI_CUS_NM'])
.aggregate({'GrossRevenue_GBP':np.sum,
'OrderCount':np.sum,
'% Rev': np.sum,
'MOVC_GBP': tmean ,
'Average order size': tmean })
df = grp_data.groupby('New_category')
.apply(lambda x: x.nlargest(1,'GrossRevenue_GBP'))
.reset_index(level=0, drop=True)
努力将 .nlargest() 应用于我的 groupedby 数据,以便仅显示每个索引的总收入最大的 10 个[0]
Groupedby 数据如下所示:
当我 运行:
grp_data.n_largest(10,'GrossRevenue_GBP')
似乎对我不起作用,完整的代码片段如下:
tmean = lambda x :stats.trim_mean(x, 0.1)
data = data.loc[(data['YYYY'] == 2016)&(data['New_category_ID'] != 0)]
grp_data = data.groupby(['New_category','CDI_CUS_NM'])['GrossRevenue_GBP',
'OrderCount',
'% Rev',
'MOVC_GBP',
'Average order size']
.aggregate({'GrossRevenue_GBP':np.sum, 'OrderCount':np.sum,'% Rev': np.sum,'MOVC_GBP': tmean ,'Average order size': tmean })
.nlargest(10,'GrossRevenue_GBP')
grp_data['Country'] = 'EU'
key1 = grp_data.index.labels[0]
key2 = grp_data['GrossRevenue_GBP'].rank(ascending=False)
sorter = np.lexsort((key2, key1))
grp_data = grp_data.take(sorter)
grp_data = grp_data[['% Rev','GrossRevenue_GBP', 'MOVC_GBP','Average order size','OrderCount','Country']]
非常感谢您的帮助。
谢谢,
我认为您需要 groupby
第一个多索引级别并使用 nlargest
:
grp_data = data.groupby(['New_category','CDI_CUS_NM'])
.aggregate({'GrossRevenue_GBP':np.sum,
'OrderCount':np.sum,
'% Rev': np.sum,
'MOVC_GBP': tmean ,
'Average order size': tmean })
df = grp_data.groupby('New_category')
.apply(lambda x: x.nlargest(1,'GrossRevenue_GBP'))
.reset_index(level=0, drop=True)