结合 Pandas GroupBy 并使用多索引数据帧进行转换

Combining Pandas GroupBy and transform with multiindex dataframes

我是 Python Pandas 的新手,我在将 Pandas GroupBytransform 结合使用时遇到问题.我一直无法找到已经发布的答案,但我可能遗漏了一些东西。

我有一个包含大量条目的 DataFrame,结构如下:

GLT_City = pd.read_csv('GlobalLandTemperaturesByCity.csv', sep=',')
GLT_City.head()

   AvgTemp  AvgTempUncert   City    Country Lat     Long    year    month   day
0   6.068   1.737          Århus    Denmark 57.05N  10.33E  1743    11  01
5   5.788   3.624          Århus    Denmark 57.05N  10.33E  1744    04  01
6   10.644  1.283          Århus    Denmark 57.05N  10.33E  1744    05  01
7   14.051  1.347          Århus    Denmark 57.05N  10.33E  1744    06  01
8   16.082  1.396          Århus    Denmark 57.05N  10.33E  1744    07  01
10  12.781  1.454          Århus    Denmark 57.05N  10.33E  1744    09  01
11  7.950   1.630          Århus    Denmark 57.05N  10.33E  1744    10  01
12  4.639   1.302          Århus    Denmark 57.05N  10.33E  1744    11  01

我想计算每个城市每个月的加权平均温度,并使用 transform() 以最平滑的方式将其作为新列添加到我的原始数据框中,原因如下这条线。

首先,我定义了一个函数来计算加权平均值:

def wavg(group,data_name,weight_name, sigma=None):
    data = group[data_name]
    weight = group[weight_name]
    #Check whether we have actual weights or measurement uncertainties
    if sigma=='sigma':
        weight = 1./weight

    try:
        return (data * weight).sum() / weight.sum()
    except ZeroDivisionError:
        return data.mean()

然后我想结合 GroupBytransform() 将此函数应用于我的数据框并将结果添加为新列,例如:

GLT_City['WeightedMonthlyMean'] = GLT_City.groupby(['City','month']).transform(wavg, 'AvgTemp','AvgTempUncert', sigma='sigma')

现在这会导致复制粘贴下面的非常冗长的错误消息

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.Int64HashTable.get_item (pandas/_libs/hashtable.c:14010)()

TypeError: an integer is required

During handling of the above exception, another exception occurred:

KeyError                                  Traceback (most recent call last)
<ipython-input-61-cef679f52b5f> in <module>()
----> 1 GLT_City['WeightedMonthlyMean'] = GLT_City.groupby(['City','month']).transform(wavg, 
'AvgTemp','AvgTemp', sigma='sigma')

~/anaconda/envs/python36/lib/python3.6/site-
packages/pandas/core/groupby.py in transform(self, func, *args, **kwargs)
   3814                 result = getattr(self, func)(*args, **kwargs)
   3815         else:
-> 3816             return self._transform_general(func, *args, **kwargs)
   3817 
   3818         # a reduction transform

~/anaconda/envs/python36/lib/python3.6/site-packages/pandas/core/groupby.py in _transform_general(self, func, *args, **kwargs)
   3765                 # Try slow path and fast path.
   3766                 try:
-> 3767                     path, res = self._choose_path(fast_path, slow_path, group)
   3768                 except TypeError:
   3769                     return self._transform_item_by_item(obj, fast_path)

~/anaconda/envs/python36/lib/python3.6/site-packages/pandas/core/groupby.py in _choose_path(self, fast_path, slow_path, group)
   3861     def _choose_path(self, fast_path, slow_path, group):
   3862         path = slow_path
-> 3863         res = slow_path(group)
   3864 
   3865         # if we make it here, test if we can use the fast path

~/anaconda/envs/python36/lib/python3.6/site-packages/pandas/core/groupby.py in <lambda>(group)
   3856             fast_path = lambda group: func(group, *args, **kwargs)
   3857             slow_path = lambda group: group.apply(
-> 3858                 lambda x: func(x, *args, **kwargs), axis=self.axis)
   3859         return fast_path, slow_path
   3860 

~/anaconda/envs/python36/lib/python3.6/site-packages/pandas/core/frame.py in apply(self, func, axis, broadcast, raw, reduce, args, **kwds)
   4260                         f, axis,
   4261                         reduce=reduce,
-> 4262                         ignore_failures=ignore_failures)
   4263             else:
   4264                 return self._apply_broadcast(f, axis)

~/anaconda/envs/python36/lib/python3.6/site-packages/pandas/core/frame.py in _apply_standard(self, func, axis, ignore_failures, reduce)
   4356             try:
   4357                 for i, v in enumerate(series_gen):
-> 4358                     results[i] = func(v)
   4359                     keys.append(v.name)
   4360             except Exception as e:

~/anaconda/envs/python36/lib/python3.6/site-packages/pandas/core/groupby.py in <lambda>(x)
   3856             fast_path = lambda group: func(group, *args, **kwargs)
   3857             slow_path = lambda group: group.apply(
-> 3858                 lambda x: func(x, *args, **kwargs), axis=self.axis)
   3859         return fast_path, slow_path
   3860 

<ipython-input-58-181ef4bb1f30> in wavg(group, data_name, weight_name, sigma)
     10 
     11     #Extracting data and weights.
---> 12     data = group[data_name]
     13     weight = group[weight_name]
     14     #Check whether we have actual weights, or measurement uncertainties

~/anaconda/envs/python36/lib/python3.6/site-packages/pandas/core/series.py in __getitem__(self, key)
    599         key = com._apply_if_callable(key, self)
    600         try:
--> 601             result = self.index.get_value(self, key)
    602 
    603             if not is_scalar(result):

~/anaconda/envs/python36/lib/python3.6/site-
packages/pandas/core/indexes/base.py in get_value(self, series, key)
   2475         try:
   2476             return self._engine.get_value(s, k,
-> 2477                                           
tz=getattr(series.dtype, 'tz', None))
   2478         except KeyError as e1:
   2479             if len(self) > 0 and self.inferred_type in ['integer', 'boolean']:

 pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value (pandas/_libs/index.c:4404)()

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value (pandas/_libs/index.c:4087)()

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5210)()

KeyError: ('AvgTemp', 'occurred at index AvgTemp')

所以这显然不起作用,但我不清楚为什么。欢迎任何 pointers/solutions。

我可以使用 apply() 方法来获得所需的输出,但是由于我对组进行平均,所以我无法真正将其与原始数据框合并,因为 [=20] 生成的系列=] 将具有不同的大小。

transform 函数分别应用于每个组列。 在 wavg 中放入一个 print 语句将帮助您看到问题:

def wavg(group,data_name,weight_name, sigma=None):
    print(group)
    ...
df['WeightedMonthlyMean'] = df.groupby(['City','month']).transform(wavg, 'AvgTemp','AvgTempUncert', sigma='sigma')

打印

1    5.788
Name: AvgTemp, dtype: object

在提高 KeyError 之前。这表明 group 只是一个系列,而不是整个(组)DataFrame。

因此,改用 apply,然后将 result 合并回 df:

result = df.groupby(['City','month']).apply(wavg, 'AvgTemp','AvgTempUncert', sigma='sigma').reset_index(name='wavg')
result = pd.merge(df, result)

例如,

import pandas as pd

df = pd.DataFrame({'AvgTemp': [6.068, 5.787999999999999, 10.644, 14.050999999999998, 16.082, 12.780999999999999, 7.95, 4.638999999999999], 'AvgTempUncert': [1.7369999999999999, 3.6239999999999997, 1.2830000000000001, 1.347, 1.396, 1.454, 1.63, 1.3019999999999998], 'City': ['Århus', 'Århus', 'Århus', 'Århus', 'Århus', 'Århus', 'Århus', 'Århus'], 'Country': ['Denmark', 'Denmark', 'Denmark', 'Denmark', 'Denmark', 'Denmark', 'Denmark', 'Denmark'], 'Lat': ['57.05N', '57.05N', '57.05N', '57.05N', '57.05N', '57.05N', '57.05N', '57.05N'], 'Long': ['10.33E', '10.33E', '10.33E', '10.33E', '10.33E', '10.33E', '10.33E', '10.33E'], 'day': [1, 1, 1, 1, 1, 1, 1, 1], 'month': [11, 4, 5, 6, 7, 9, 10, 11], 'year': [1743, 1744, 1744, 1744, 1744, 1744, 1744, 1744]}) 

def wavg(group,data_name,weight_name, sigma=None):
    data = group[data_name]
    weight = group[weight_name]
    #Check whether we have actual weights or measurement uncertainties
    if sigma=='sigma':
        weight = 1./weight

    try:
        return (data * weight).sum() / weight.sum()
    except ZeroDivisionError:
        return data.mean()

result = df.groupby(['City','month']).apply(wavg, 'AvgTemp','AvgTempUncert', sigma='sigma').reset_index(name='wavg')
result = pd.merge(df, result)
print(result)

产量

   AvgTemp  AvgTempUncert   City  Country     Lat    Long  day  month  year       wavg  
0    6.068          1.737  Århus  Denmark  57.05N  10.33E    1     11  1743   5.251227   
1    4.639          1.302  Århus  Denmark  57.05N  10.33E    1     11  1744   5.251227   
2    5.788          3.624  Århus  Denmark  57.05N  10.33E    1      4  1744   5.788000   
3   10.644          1.283  Århus  Denmark  57.05N  10.33E    1      5  1744  10.644000   
4   14.051          1.347  Århus  Denmark  57.05N  10.33E    1      6  1744  14.051000   
5   16.082          1.396  Århus  Denmark  57.05N  10.33E    1      7  1744  16.082000   
6   12.781          1.454  Århus  Denmark  57.05N  10.33E    1      9  1744  12.781000   
7    7.950          1.630  Århus  Denmark  57.05N  10.33E    1     10  1744   7.950000   

如何使用 apply 然后 merge 将其放入相同的 DataFrame?示例:

import numpy as np
import pandas as pd
data = pd.DataFrame({'City': np.random.randint(0, 4, 1000), 'Month': np.random.randint(1, 12, 1000), 'T': np.random.randn(1000)})
pd.merge(data, data.groupby(['City', 'Month']).apply(lambda x: x['T']*2).reset_index()[['City', 'Month', 'T']].rename(columns={'T': 'WeightedT'}), left_on=['City', 'Month'], right_on=['City', 'Month'])