使用 Pandas 扩展时间序列事件

Expanding timeseries events with Pandas

问题

我正在寻找有关如何使它更 pythonic 并提高效率的建议。

我有一个包含事件的数据框,每个事件至少有一个开始和结束时间戳。我正在扩展记录数,以便新的 table 间隔重叠的每一小时都有一条记录。

这与 QlikView 中的 IntervalMatch function 基本相同。

示例: 18:00-20:00 的事件扩展为两个不同的记录,一个用于 18:00-19:00,另一个用于 19:00-20:00.

当前解

我有一个完全可用的解决方案,但我认为它相当丑陋,并且在具有 >100k 行和 10-20 列的大型数据集上非常慢。

import pandas as pd
from datetime import timedelta

def interval_match(df):

    intervals = []

    def perdelta(start, end, delta):
        curr = start.replace(minute=0, second=0)
        while curr < end:
            yield curr
            curr += delta

    def interval_split(x):

        for t in perdelta(x.Start, x.End, timedelta(hours=1)):
            _ = ([x.id,
                  x.Start,
                  x.End,
                  max(t, x.Start),
                  min((t+timedelta(hours=1), x.End))])

            intervals.append(_)

    df.apply(interval_split, axis=1)

    ndf = pd.DataFrame(intervals, 
                       columns=['id', 
                                'Start', 
                                'End', 
                                'intervalStart', 
                                'intervalEnd'])

    ndf['Duration'] = ndf.iEnd - ndf.iStart

    return ndf

通过一些示例数据,函数 interval_match() 可以这样使用:

# Some example data
df = pd.DataFrame({'End': {0: pd.Timestamp('2016-01-01 09:24:20')},
                   'Start': {0: pd.Timestamp('2016-01-01 06:56:10')},
                   'id': {0: 1234562}})


# Running the function
interval_match(df).to_dict()


# Output
{'Duration': {0: Timedelta('0 days 00:03:50'),
              1: Timedelta('0 days 01:00:00'),
              2: Timedelta('0 days 01:00:00'),
              3: Timedelta('0 days 00:24:20')},
      'End': {0: Timestamp('2016-01-01 09:24:20'),
              1: Timestamp('2016-01-01 09:24:20'),
              2: Timestamp('2016-01-01 09:24:20'),
              3: Timestamp('2016-01-01 09:24:20')},
    'Start': {0: Timestamp('2016-01-01 06:56:10'),
              1: Timestamp('2016-01-01 06:56:10'),
              2: Timestamp('2016-01-01 06:56:10'),
              3: Timestamp('2016-01-01 06:56:10')},
'intervalEnd':{0: Timestamp('2016-01-01 07:00:00'),
              1: Timestamp('2016-01-01 08:00:00'),
              2: Timestamp('2016-01-01 09:00:00'),
              3: Timestamp('2016-01-01 09:24:20')},
'intervalStart': {0: Timestamp('2016-01-01 06:56:10'),
              1: Timestamp('2016-01-01 07:00:00'),
              2: Timestamp('2016-01-01 08:00:00'),
              3: Timestamp('2016-01-01 09:00:00')},
       'id': {0: 1234562, 
              1: 1234562, 
              2: 1234562, 
              3: 1234562}}

我的愿望是

  1. 提高效率,最好使用内置 Pandas 函数或一些 numpy 魔法。
  2. 不必像我今天在 interval_split 函数中那样处理列。只需操作并扩展整个数据框。

感谢任何建议或帮助。

我做了一个变体(受您的代码启发)并且 运行 非常慢。我处理 20k 行数据的时间约为 5 分钟,分析后的罪魁祸首是 .append。有一个技巧是把所有的记录放到一个字典里,然后用一个DataFramefrom_dict方法。使用 from_dict 处理相同的 20k 行,它在大约 5 秒内完成(因此快了约 60 倍)。

我附上了我的代码,它的灵感来自于你的代码,它对于列输入也是通用的(我的测试使用与生产使用是不同的)。

import pandas as pd
from collections import namedtuple
from datetime import timedelta

Interval = namedtuple('Interval', 'field_name start_time end_time delta')

class IntervalMatch(object):

    def __init__(self):
        pass

    def per_delta(self,interval: Interval, include_start: bool):
        current_interval = interval.start_time
        if not include_start:
            current_interval += pd.DateOffset(seconds=interval.delta)

        while current_interval < interval.end_time:
            yield current_interval
            current_interval += pd.DateOffset(seconds=interval.delta)

    def _copy(self, row, columns: pd.Index):
        values = pd.Series(row).values
        return pd.DataFrame([values], columns=columns.values).copy(True)

    def interval_split(self, interval: Interval, base_row: pd.Series, columns: pd.Index, include_start: bool):
        for time in self.per_delta(interval, include_start):
            extended_row = self._copy(base_row, columns)
            extended_row.at[(0, interval.field_name)] = time
            yield extended_row

    def get_exploded_records(self, data_to_examine: pd.DataFrame, time_field_name: str):
        last_row = None
        results = pd.DataFrame()
        delta = 1 # second

        time_col_index = data_to_examine.columns.get_loc(time_field_name)

        # process each row.  It is possible there is a map/reduce/fluent way of doing this w/ Pandas
        intermediate_results = {}
        current_row = -1
        for row in data_to_examine.itertuples(index=False):
            current_row += 1
            if last_row is None:
                last_row = row
                intermediate_results[current_row] = row
                continue

            total_seconds = (row[time_col_index] - last_row[time_col_index]).total_seconds()
            if total_seconds > 1 and total_seconds < 100:
                # there is a gap, so we want to explode the gap into the data and fill it with last_row values.
                interval = Interval(time_field_name, last_row[time_col_index], row[time_col_index], delta)
                for intrvl in self.interval_split(interval, last_row, data_to_examine.columns, False):
                    # we must unroll the list of rows to just the first row (since there is only one)
                    intermediate_results[current_row] = intrvl.values[0]
                    current_row += 1

            # append the current row
            intermediate_results[current_row] = row
            last_row = row

        results = pd.DataFrame.from_dict(intermediate_results, orient='index') #, columns=data_to_examine.columns)
        return results

def test():
        print("Preparing Data")
        timestamps = ['2016-01-01 09:24:20', '2016-01-01 09:24:21',
                      '2016-01-01 09:24:23', '2016-01-01 09:24:24', '2016-01-01 09:24:40']
        data_with_gaps = pd.DataFrame({'timestamp':[pd.Timestamp(timestamp) for timestamp in timestamps],
                                       'names':['Torial', 'Torial', 'Knut', 'Knut', 'Torial'],
                                       'action':['Add','Edit','Add', 'Edit','Delete']})

        interval = IntervalMatch()
        print("Getting Exploded Records")
        exploded = interval.get_exploded_records(data_with_gaps, 'timestamp')
        print(f"Data with Gaps: {data_with_gaps}")
        print(f"Exploded: {exploded}")
        exploded.to_csv("Exploded_test.csv")