使用来自 sklearn 的 LinearSVC 的不一致预测结果,

Inconsistent prediction results using LinearSVC from sklearn,

我正在使用 SKLearn 的 LinearSVC (LibLinear) 执行简单分类。

我无法直接重现预测值并获得与 "LinearSVC.predict" 相同的准确度。

我做错了什么?以下代码是独立的,突出了我的问题。

import scipy as sc
import numpy as np
from sklearn.svm import LinearSVC #liblinear
N=6000
m=500

D = sc.sparse.random(N,m, random_state = 1)
D.data *= 2
D.data -= 1
X = sc.sparse.csr_matrix(D)
y = (X.sum(axis = 1) > .0)*2-1.0 

x_train = X[:5000,:]
y_train = y[:5000,:]
x_test  = X[5000:,:]
y_test  = y[5000:,:]

clf = LinearSVC(C=.1, fit_intercept = False, loss= 'hinge')
clf.fit(x_train,np.array(y_train))

print "Direct prediction accuracy:\t",100-100*np.mean((np.sign(x_test*clf.coef_.T)!=y_test)+0.0) ,"%"
print "CLF prediction accuracy:\t",  100*clf.score(x_test,y_test),"%"

输出:

Direct prediction accuracy:     90.8 %
CLF prediction accuracy:        91.3 %

感谢您的帮助!

不同之处在于您如何处理零,当使用 np.sign 时,您在结果中有零,这些零未分类到任何有效的 类(1 或 -1,因为您有一个二元分类器);另一方面,Classifier.predict 严格输出两个 类;从 np.sign(x_test*clf.coef_.T)(np.where(x_test * clf.coef_.T > 0, 1, -1) 的预测方法的微小变化将提供与内置 predict 方法完全相同的准确性:

​
print "Direct prediction accuracy:\t", 100-100*np.mean((np.where(x_test * clf.coef_.T > 0, 1, -1) != y_test)+0.0) ,"%"
print "CLF prediction accuracy:\t",  100*clf.score(x_test, y_test),"%"

# Direct prediction accuracy:   92.7 %
# CLF prediction accuracy:  92.7 %