python plotly 在和弦图中添加颜色条
Adding a color bar to a chord diagram in python plotly
我需要帮助弄清楚如何将颜色条添加到我制作的和弦图中。我想添加一个颜色条,例如 heat map but in a chord diagram,不要与 python 中的填充和弦图混淆。
我尝试添加更多 links 和图片,但我想我需要更多声望:( 热图 link 是情节。ly/python/heatmaps。和弦图位于plot.ly/python/chord-diagram.填充的和弦图在plot.ly/python/filled-chord-diagram.
我计划使用热图的方式是根据数据让和弦图上的每条线都是某种颜色。例如,如果数据表明该线的值为 80,则它会像热图中那样显示为红色。如果数据显示 50,它会像热图中那样呈橙黄色。
非常感谢!
让我们假设您的颜色值存储在名为 my_weights
的列表中。
my_weights = [random.random() for _ in E]
其中 E 是边列表。
然后我们可以添加一条仅用于绘制颜色条的轨迹。它的标记隐藏在其中一个节点后面。
color_trace = plotly.graph_objs.Scatter(x=[0 for _ in my_weights],
y=[0 for _ in my_weights],
mode='markers',
marker=plotly.graph_objs.Marker(
colorscale=[
[c / 100.0, 'rgba({}, {}, {}, {})'.format(*color_range(c / 100.0))] for
c in range(101)],
size=1,
color=my_weights,
showscale=True,
)
)
对于色标,我们可以使用 matplotlib
得到 custom color generator。
color_range = plt.get_cmap('OrRd')
完整代码基于示例 here 并生成下图。
import igraph as ig
import numpy as np
import plotly
import matplotlib.pyplot as plt
import random
color_range = plt.get_cmap('OrRd')
def dist(a, b):
return np.linalg.norm(np.array(a) - np.array(b))
def get_idx_interv(d, D):
k = 0
while d > D[k]:
k += 1
return k - 1
def deCasteljau(b, t):
n = len(b)
a = np.copy(b) # shallow copy of the list of control points
for r in range(1, n):
a[:n - r, :] = (1 - t) * a[:n - r, :] + t * a[1:n - r + 1, :]
return a[0, :]
def bezierCv(b, nr=5):
t = np.linspace(0, 1, nr)
return np.array([deCasteljau(b, t[k]) for k in range(nr)])
G = ig.Graph.Read_GML('Eurovision15.gml')
V = list(G.vs)
G.vs.attributes()
labels = [v['label'] for v in V]
E = [e.tuple for e in G.es]
ContestantLst = [G.vs[e[2]] for e in E]
Contestant = list(set([v['label'] for v in ContestantLst]))
layt = G.layout('circular')
Weights = map(int, G.es["weight"])
Dist = [0, dist([1, 0], 2 * [np.sqrt(2) / 2]), np.sqrt(2),
dist([1, 0], [-np.sqrt(2) / 2, np.sqrt(2) / 2]), 2.0]
params = [1.2, 1.5, 1.8, 2.1]
node_color = ['rgba(0,51,181, 0.85)' if v['label'] in Contestant else '#CCCCCC' for v in G.vs]
line_color = ['#FFFFFF' if v['label'] in Contestant else 'rgb(150,150,150)' for v in G.vs]
edge_colors = ['#d4daff', '#84a9dd', '#5588c8', '#6d8acf']
L = len(layt)
Xn = [layt[k][0] for k in range(L)]
Yn = [layt[k][2] for k in range(L)]
lines = list()
edge_info = list()
my_weights = [random.random() for _ in E]
for j, e in enumerate(E):
A = np.array(layt[e[0]])
B = np.array(layt[e[2]])
d = dist(A, B)
K = get_idx_interv(d, Dist)
b = [A, A / params[K], B / params[K], B]
color = edge_colors[K]
pts = bezierCv(b)
text = V[e[0]]['label'] + ' to ' + V[e[2]]['label'] + ' ' + str(Weights[j]) + ' pts'
mark = deCasteljau(b, 0.9)
edge_info.append(plotly.graph_objs.Scatter(x=mark[0],
y=mark[2],
mode='markers',
marker=plotly.graph_objs.Marker(size=0.5, color=edge_colors),
text=text,
hoverinfo='text'
)
)
lines.append(plotly.graph_objs.Scatter(x=pts[:, 0],
y=pts[:, 1],
mode='lines',
line=plotly.graph_objs.Line(
color='rgba({}, {}, {}, {})'.format(*color_range(my_weights[j])),
shape='spline',
width=Weights[j] / 5),
hoverinfo='none')
)
trace2 = plotly.graph_objs.Scatter(x=Xn,
y=Yn,
mode='markers',
marker=plotly.graph_objs.Marker(symbol='dot',
size=15,
color=node_color,
line=plotly.graph_objs.Line(color=line_color,
width=0.5)
),
text=labels,
hoverinfo='text'
)
color_trace = plotly.graph_objs.Scatter(x=[0 for _ in my_weights],
y=[0 for _ in my_weights],
mode='markers',
marker=plotly.graph_objs.Marker(
colorscale=[
[c / 100.0, 'rgba({}, {}, {}, {})'.format(*color_range(c / 100.0))] for
c in range(101)],
size=1,
color=my_weights,
showscale=True,
)
)
axis = dict(showline=False,
zeroline=False,
showgrid=False,
showticklabels=False,
title=''
)
layout = plotly.graph_objs.Layout(showlegend=False,
autosize=False,
width=800,
height=850,
xaxis=plotly.graph_objs.XAxis(axis),
yaxis=plotly.graph_objs.YAxis(axis),
margin=plotly.graph_objs.Margin(l=40,
r=40,
b=85,
t=100,
),
hovermode='closest')
data = plotly.graph_objs.Data([color_trace] + lines + edge_info + [trace2])
fig = plotly.graph_objs.Figure(data=data, layout=layout)
plotly.offline.plot(fig, filename='Eurovision-15.html')
我需要帮助弄清楚如何将颜色条添加到我制作的和弦图中。我想添加一个颜色条,例如 heat map but in a chord diagram,不要与 python 中的填充和弦图混淆。
我尝试添加更多 links 和图片,但我想我需要更多声望:( 热图 link 是情节。ly/python/heatmaps。和弦图位于plot.ly/python/chord-diagram.填充的和弦图在plot.ly/python/filled-chord-diagram.
我计划使用热图的方式是根据数据让和弦图上的每条线都是某种颜色。例如,如果数据表明该线的值为 80,则它会像热图中那样显示为红色。如果数据显示 50,它会像热图中那样呈橙黄色。
非常感谢!
让我们假设您的颜色值存储在名为 my_weights
的列表中。
my_weights = [random.random() for _ in E]
其中 E 是边列表。
然后我们可以添加一条仅用于绘制颜色条的轨迹。它的标记隐藏在其中一个节点后面。
color_trace = plotly.graph_objs.Scatter(x=[0 for _ in my_weights],
y=[0 for _ in my_weights],
mode='markers',
marker=plotly.graph_objs.Marker(
colorscale=[
[c / 100.0, 'rgba({}, {}, {}, {})'.format(*color_range(c / 100.0))] for
c in range(101)],
size=1,
color=my_weights,
showscale=True,
)
)
对于色标,我们可以使用 matplotlib
得到 custom color generator。
color_range = plt.get_cmap('OrRd')
完整代码基于示例 here 并生成下图。
import igraph as ig
import numpy as np
import plotly
import matplotlib.pyplot as plt
import random
color_range = plt.get_cmap('OrRd')
def dist(a, b):
return np.linalg.norm(np.array(a) - np.array(b))
def get_idx_interv(d, D):
k = 0
while d > D[k]:
k += 1
return k - 1
def deCasteljau(b, t):
n = len(b)
a = np.copy(b) # shallow copy of the list of control points
for r in range(1, n):
a[:n - r, :] = (1 - t) * a[:n - r, :] + t * a[1:n - r + 1, :]
return a[0, :]
def bezierCv(b, nr=5):
t = np.linspace(0, 1, nr)
return np.array([deCasteljau(b, t[k]) for k in range(nr)])
G = ig.Graph.Read_GML('Eurovision15.gml')
V = list(G.vs)
G.vs.attributes()
labels = [v['label'] for v in V]
E = [e.tuple for e in G.es]
ContestantLst = [G.vs[e[2]] for e in E]
Contestant = list(set([v['label'] for v in ContestantLst]))
layt = G.layout('circular')
Weights = map(int, G.es["weight"])
Dist = [0, dist([1, 0], 2 * [np.sqrt(2) / 2]), np.sqrt(2),
dist([1, 0], [-np.sqrt(2) / 2, np.sqrt(2) / 2]), 2.0]
params = [1.2, 1.5, 1.8, 2.1]
node_color = ['rgba(0,51,181, 0.85)' if v['label'] in Contestant else '#CCCCCC' for v in G.vs]
line_color = ['#FFFFFF' if v['label'] in Contestant else 'rgb(150,150,150)' for v in G.vs]
edge_colors = ['#d4daff', '#84a9dd', '#5588c8', '#6d8acf']
L = len(layt)
Xn = [layt[k][0] for k in range(L)]
Yn = [layt[k][2] for k in range(L)]
lines = list()
edge_info = list()
my_weights = [random.random() for _ in E]
for j, e in enumerate(E):
A = np.array(layt[e[0]])
B = np.array(layt[e[2]])
d = dist(A, B)
K = get_idx_interv(d, Dist)
b = [A, A / params[K], B / params[K], B]
color = edge_colors[K]
pts = bezierCv(b)
text = V[e[0]]['label'] + ' to ' + V[e[2]]['label'] + ' ' + str(Weights[j]) + ' pts'
mark = deCasteljau(b, 0.9)
edge_info.append(plotly.graph_objs.Scatter(x=mark[0],
y=mark[2],
mode='markers',
marker=plotly.graph_objs.Marker(size=0.5, color=edge_colors),
text=text,
hoverinfo='text'
)
)
lines.append(plotly.graph_objs.Scatter(x=pts[:, 0],
y=pts[:, 1],
mode='lines',
line=plotly.graph_objs.Line(
color='rgba({}, {}, {}, {})'.format(*color_range(my_weights[j])),
shape='spline',
width=Weights[j] / 5),
hoverinfo='none')
)
trace2 = plotly.graph_objs.Scatter(x=Xn,
y=Yn,
mode='markers',
marker=plotly.graph_objs.Marker(symbol='dot',
size=15,
color=node_color,
line=plotly.graph_objs.Line(color=line_color,
width=0.5)
),
text=labels,
hoverinfo='text'
)
color_trace = plotly.graph_objs.Scatter(x=[0 for _ in my_weights],
y=[0 for _ in my_weights],
mode='markers',
marker=plotly.graph_objs.Marker(
colorscale=[
[c / 100.0, 'rgba({}, {}, {}, {})'.format(*color_range(c / 100.0))] for
c in range(101)],
size=1,
color=my_weights,
showscale=True,
)
)
axis = dict(showline=False,
zeroline=False,
showgrid=False,
showticklabels=False,
title=''
)
layout = plotly.graph_objs.Layout(showlegend=False,
autosize=False,
width=800,
height=850,
xaxis=plotly.graph_objs.XAxis(axis),
yaxis=plotly.graph_objs.YAxis(axis),
margin=plotly.graph_objs.Margin(l=40,
r=40,
b=85,
t=100,
),
hovermode='closest')
data = plotly.graph_objs.Data([color_trace] + lines + edge_info + [trace2])
fig = plotly.graph_objs.Figure(data=data, layout=layout)
plotly.offline.plot(fig, filename='Eurovision-15.html')