将每日和定期数据合并到一个数据框中

Merging Daily and Periodic Data into one Dataframe

我正在尝试构建一个面板数据数据框,其中包含定期数据和 'continous' 日常数据,这些数据应该相互分配,以便新数据框的每一行都有,期间,周期数据的值以及该期间内某一天的值和日期,数据看起来类似于:

> dailycds
         Date CDS
1  30-06-2015 194
2  01-07-2015 195
3  02-07-2015 198
4  03-07-2015 198
5  04-07-2015 199
6  30-06-2016 165
7  01-07-2016 172
8  02-07-2016 213
9  03-07-2016 123
10 04-07-2016 321


> periodicassets
  Period Assets
1 201506   1314
2 201606   2134

最终,我希望它看起来像这样:

  > df
Period       Date Assets CDS
1 201506 30-06-2015   1314 194
2 201506 01-07-2015   1314 195
3 201506 02-07-2015   1314 198
4 201506 03-07-2015   1314 198
5 201606 30-06-2016   2134 165
6 201606 01-07-2016   2134 172
7 201606 02-07-2016   2134 213
8 201606 03-07-2016   2134 123

所以基本上,我们的想法是从日常数据中获取特定范围的行,并将它们分配(并合并)到周期性数据中。不幸的是,我不能简单地通过提取日期的 mm-yyyy 部分来做到这一点,因为 201506 期间也包含 7 月到第三天的数据,而第四个与任何期间无关,应该被删除,因为每个期间都应该仅包含特定天数(在本例中为 4)。

以上示例数据的代码如下:

dailycds = data.frame(Date = c("30-06-2015", "01-07-2015", "02-07-2015","03-07-2015","04-07-2015","30-06-2016", "01-07-2016", "02-07-2016","03-07-2016","04-07-2016"),
                      CDS = c(194, 195, 198,198,199,165,172,213,123,321))
dailycds

periodicassets = data.frame(Period = c("201506", "201606"),
                            Assets = c("1314","2134"))
periodicassets

df = data.frame(Period = c("201506", "201506", "201506", "201506", "201606", "201606", "201606", "201606"),
                Date = c("30-06-2015", "01-07-2015", "02-07-2015","03-07-2015", "30-06-2016", "01-07-2016", "02-07-2016", "03-07-2016"),
                Assets = c("1314", "1314", "1314", "1314", "2134", "2134", "2134", "2134"),
                CDS = c(194, 195, 198, 198, 165, 172, 213, 123))

背景和其他并发症

因此,正如给定解决方案中所建议的那样,我之前的示例非常具体并且可能过于简化。因此,为了更接近我的问题,这里有一些额外的上下文: 最终,定期数据指的是银行资产的月末持有量,我想在月末前 3 天和月末后 6 天左右的时间(例如)分配每日 CDS 数据。因此,在面板中当然有多家银行,对于每家银行,(相同的)CDS 数据都必须分配给其持有量。 (例如,如果我有 2 家银行,我需要在月底前 3 天和月底后 6 天,我有 (3+1+6)*2 天。)正如评论中所指出的,我总是指 business/working 天在我的问题中,因为我的时间序列不包含任何假期等。

所以,为了公正地对待这个问题,这里是原文中只有一个句号的片段:

> periodicassets
            BankName Period     value 
  2             BPCE 201412 112189.50
  4  Credit Agricole 201412  81618.76

    Date                CDS
   <dttm>              <chr>
  1 2015-01-12             46.869
  2 2015-01-09 48.121000000000002
  3 2015-01-08 48.625999999999998
  4 2015-01-07 48.801000000000002
  5 2015-01-06 48.633000000000003
  6 2015-01-05 46.670999999999999
  7 2015-01-02 45.158000000000001
  8 2015-01-01              47.32
  9 2014-12-31 47.658000000000001
 10 2014-12-30 45.843000000000004
 11 2014-12-29 47.588999999999999
 12 2014-12-26 47.625999999999998
 13 2014-12-25 47.697000000000003
 14 2014-12-24 47.414999999999999
 15 2014-12-23 48.075000000000003
 16 2014-12-22 48.085999999999999
 17 2014-12-19 47.496000000000002
 18 2014-12-18 46.534999999999997
 19 2014-12-17 48.149000000000001

可在此处访问:periodic assetsdailycds

在浏览论坛时,我发现了类似的问题,例如: create an index for aggregating daily data to match periodic datacreate an index for aggregating daily data to match periodic data,但是,当第一个尝试聚合数据时,第二个已经拥有我想要的格式(在对象 xtime 中)。

看看这是否适合你

library(lubridate)
library(dplyr)
library(tidyr)

periodicassets <- periodicassets %>%
        mutate(Date = ymd(paste(Period, "01", sep = ""))) %>%
        select(-Period)


dailycds$Date <- dmy(dailycds$Date)

full_join(dailycds, periodicassets) %>% 
        arrange(Date) %>% fill(Assets, .direction = "down") %>%
        na.omit

加入,来自 = "Date"

         Date CDS Assets
2  2015-06-30 194   1314
3  2015-07-01 195   1314
4  2015-07-02 198   1314
5  2015-07-03 198   1314
6  2015-07-04 199   1314
8  2016-06-30 165   2134
9  2016-07-01 172   2134
10 2016-07-02 213   2134
11 2016-07-03 123   2134
12 2016-07-04 321   2134

这道题的关键问题是Period如何映射到Date。从OP的描述我了解到每个期间包括实际月份的最后一天加上下个月的前三天,总共4天。

这可以通过一些日期算法和右​​连接来解决:

library(data.table)
result <- 
  # coerce to data.table
  setDT(dailycds)[
    # compute period by subtracting 3 days of date
    , Period := format(as.IDate(Date, "%d-%m-%Y") - 3L, "%Y%m")][
      # right join, dropping all rows from dailycds without matching period
      periodicassets, on = "Period"][
        # change column order to be in line with expected result df
      , setcolorder(.SD, names(df))]
result
   Period       Date Assets CDS
1: 201506 30-06-2015   1314 194
2: 201506 01-07-2015   1314 195
3: 201506 02-07-2015   1314 198
4: 201506 03-07-2015   1314 198
5: 201606 30-06-2016   2134 165
6: 201606 01-07-2016   2134 172
7: 201606 02-07-2016   2134 213
8: 201606 03-07-2016   2134 123

请求的每个周期只有4行,符合预期结果df:

all.equal(df, as.data.frame(result[, lapply(.SD, forcats::fct_drop)]))
[1] TRUE

必须删除未使用的级别才能通过 all.equal()

的严格检查

警告

代码已经过测试,可以与提供的示例数据一起使用。如果是连续的每日数据和周期性数据,可能需要添加代码以删除不属于 4 天周期的日期。


编辑:更真实的示例数据

OP 更新了他的问题,并通过 dropbox 提供了更真实的样本数据。现在,dailycds 包含每日数据(周末除外)。正如上面 警告 中所述,这需要 dailycds 过滤相关日期。

OP 不清楚如何定义月初和之后要考虑的天数。在这里,我们假设 月底前 3 天和月底后 6 天 指的是 calendar 天而不是 business天。

# define day range of interest relativ to turn of the month
days_before <- 3L
days_after  <- 6L
stopifnot(days_before + days_after < 28)

# read data from dropbox links, note ?dl=1 
dailycds <- readRDS(url("https://www.dropbox.com/s/r7v5dq6la0mnn71/dailycds.RDS?dl=1"))
periodicassets <-
  readRDS(url("https://www.dropbox.com/s/gdflcngwp8nm552/periodicassets.RDS?dl=1"))

library(data.table)
# coerce to data.table
setDT(dailycds)[
  # filter calendar dates
  mday(Date) <= days_after | mday(Date) > lubridate::days_in_month(Date) - days_before][
    # compute period by shifting dates from next month into actual month
    # coersion to IDate is required because Date is of class POSIXct 
    , Period := format(as.IDate(Date) - days_after, "%Y%m")][
      # right join, dropping all rows from dailycds without matching period
      setDT(periodicassets), on = "Period"][]
          Date                CDS Period         BankName     value
 1: 2015-01-06 48.633000000000003 201412             BPCE 112189.50
 2: 2015-01-05 46.670999999999999 201412             BPCE 112189.50
 3: 2015-01-02 45.158000000000001 201412             BPCE 112189.50
 4: 2015-01-01              47.32 201412             BPCE 112189.50
 5: 2014-12-31 47.658000000000001 201412             BPCE 112189.50
 6: 2014-12-30 45.843000000000004 201412             BPCE 112189.50
 7: 2014-12-29 47.588999999999999 201412             BPCE 112189.50
 8: 2015-02-06 47.265000000000001 201501             BPCE 103142.06
 9: 2015-02-05 47.073999999999998 201501             BPCE 103142.06
10: 2015-02-04 46.634999999999998 201501             BPCE 103142.06
11: 2015-02-03 46.405000000000001 201501             BPCE 103142.06
12: 2015-02-02             47.567 201501             BPCE 103142.06
13: 2015-01-30 47.396000000000001 201501             BPCE 103142.06
14: 2015-01-29 48.448999999999998 201501             BPCE 103142.06
15: 2015-01-06 48.633000000000003 201412  Credit Agricole  81618.76
16: 2015-01-05 46.670999999999999 201412  Credit Agricole  81618.76
...
26: 2015-02-02             47.567 201501  Credit Agricole  73987.36
27: 2015-01-30 47.396000000000001 201501  Credit Agricole  73987.36
28: 2015-01-29 48.448999999999998 201501  Credit Agricole  73987.36
          Date                CDS Period         BankName     value

编辑 2:使用工作日而不是日历日期。

他使用工作日而不是日历日。规范的这一看似微小的变化对要包含的日期的选择方式产生了严重影响。

现在,总是选择每个月的前 6 个条目以及该月最后一个交易日之前的最后 3 个条目 (ultimo) 和 ultimo 本身,这导致 3 + 1 + 6 = 10 个工作日 来挑选。

# define range of business days relative to the last trading day (ultimo)
days_before <- 3L
days_after  <- 6L
stopifnot(days_before + days_after < 28)

library(data.table)
# read data from dropbox links, note ?dl=1 
dailycds <- readRDS(url("https://www.dropbox.com/s/r7v5dq6la0mnn71/dailycds.RDS?dl=1"))
periodicassets <- readRDS(url("https://www.dropbox.com/s/gdflcngwp8nm552/periodicassets.RDS?dl=1"))
# coerce to data.table
setDT(dailycds)[
  # filter business dates: 
  # for each month pick the first days_after business days into the month 
  # and the last days_before biz days before and including ultimo
  dailycds[, c(head(.I, days_after), tail(.I, days_before + 1L)), 
           by = .(year(Date), month(Date))]$V1][
    # compute period by shifting dates from next month into actual month
    # coersion to IDate is required because Date is of class POSIXct 
    , Period := format(as.IDate(Date) - days_after, "%Y%m")][
      # right join, dropping all rows from dailycds without matching period
      setDT(periodicassets), on = "Period"][]
          Date                CDS Period         BankName     value
 1: 2015-01-06 48.633000000000003 201412             BPCE 112189.50
 2: 2015-01-05 46.670999999999999 201412             BPCE 112189.50
 3: 2015-01-02 45.158000000000001 201412             BPCE 112189.50
 4: 2015-01-01              47.32 201412             BPCE 112189.50
 5: 2014-12-31 47.658000000000001 201412             BPCE 112189.50
 6: 2014-12-30 45.843000000000004 201412             BPCE 112189.50
 7: 2014-12-29 47.588999999999999 201412             BPCE 112189.50
 8: 2014-12-26 47.625999999999998 201412             BPCE 112189.50
 9: 2014-12-25 47.697000000000003 201412             BPCE 112189.50
10: 2014-12-24 47.414999999999999 201412             BPCE 112189.50
11: 2015-02-05 47.073999999999998 201501             BPCE 103142.06
12: 2015-02-04 46.634999999999998 201501             BPCE 103142.06
13: 2015-02-03 46.405000000000001 201501             BPCE 103142.06
14: 2015-02-02             47.567 201501             BPCE 103142.06
15: 2015-01-30 47.396000000000001 201501             BPCE 103142.06
16: 2015-01-29 48.448999999999998 201501             BPCE 103142.06
17: 2015-01-28             49.442 201501             BPCE 103142.06
18: 2015-01-27 49.502000000000002 201501             BPCE 103142.06
19: 2015-01-26              49.73 201501             BPCE 103142.06
20: 2015-01-23 50.917000000000002 201501             BPCE 103142.06
21: 2015-01-06 48.633000000000003 201412  Credit Agricole  81618.76
22: 2015-01-05 46.670999999999999 201412  Credit Agricole  81618.76
...
39: 2015-01-26              49.73 201501  Credit Agricole  73987.36
40: 2015-01-23 50.917000000000002 201501  Credit Agricole  73987.36
          Date                CDS Period         BankName     value

注意结果数据集包含(3 + 1 + 6) * 2个月* 2 banks = 40行.

数据来自 dropbox

如果保管箱链接断开:

dailycds <- 
structure(list(Date = structure(c(1424649600, 1424390400, 1424304000, 
1424217600, 1424131200, 1424044800, 1423785600, 1423699200, 1423612800, 
1423526400, 1423440000, 1423180800, 1423094400, 1423008000, 1422921600, 
1422835200, 1422576000, 1422489600, 1422403200, 1422316800, 1422230400, 
1421971200, 1421884800, 1421798400, 1421712000, 1421625600, 1421366400, 
1421280000, 1421193600, 1421107200, 1421020800, 1420761600, 1420675200, 
1420588800, 1420502400, 1420416000, 1420156800, 1420070400, 1419984000, 
1419897600, 1419811200, 1419552000, 1419465600, 1419379200, 1419292800, 
1419206400, 1418947200, 1418860800, 1418774400, 1418688000, 1418601600, 
1418342400, 1418256000, 1418169600, 1418083200, 1417996800, 1417737600, 
1417651200, 1417564800, 1417478400, 1417392000, 1417132800, 1417046400, 
1416960000, 1416873600, 1416787200, 1416528000, 1416441600, 1416355200, 
1416268800, 1416182400, 1415923200, 1415836800, 1415750400, 1415664000, 
1415577600, 1415318400, 1415232000, 1415145600, 1415059200, 1414972800
), class = c("POSIXct", "POSIXt"), tzone = "UTC"), CDS = c("44.259", 
"44.555999999999997", "45.076999999999998", "44.951000000000001", 
"45.762", "45.573", "45.634999999999998", "45.956000000000003", 
"47.064", "47.51", "48.576999999999998", "47.265000000000001", 
"47.073999999999998", "46.634999999999998", "46.405000000000001", 
"47.567", "47.396000000000001", "48.448999999999998", "49.442", 
"49.502000000000002", "49.73", "50.917000000000002", "51.37", 
"52.536999999999999", "49.188000000000002", "47.893999999999998", 
"46.728000000000002", "46.634999999999998", "46.366999999999997", 
"47.012999999999998", "46.869", "48.121000000000002", "48.625999999999998", 
"48.801000000000002", "48.633000000000003", "46.670999999999999", 
"45.158000000000001", "47.32", "47.658000000000001", "45.843000000000004", 
"47.588999999999999", "47.625999999999998", "47.697000000000003", 
"47.414999999999999", "48.075000000000003", "48.085999999999999", 
"47.496000000000002", "46.534999999999997", "48.149000000000001", 
"49.421999999999997", "48.223999999999997", "47.100999999999999", 
"47.484999999999999", "47.491999999999997", "47.052", "46.697000000000003", 
"44.670999999999999", "47.706000000000003", "46.835000000000001", 
"48.66", "46.841999999999999", "48.069000000000003", "49.49", 
"50.155000000000001", "50.155000000000001", "50.49", "52.024000000000001", 
"50.33", "50", "50.67", "53.15", "52.994999999999997", "55.31", 
"50.82", "50.49", "50.832999999999998", "52.241", "51.97", "52.8", 
"50.667000000000002", "51.134999999999998")), .Names = c("Date", 
"CDS"), row.names = c(NA, -81L), class = c("tbl_df", "tbl", "data.frame"))

periodicassets <- 
structure(list(BankName = c(" BPCE", " BPCE", " Credit Agricole", 
" Credit Agricole"), Period = c("201412", "201501", "201412", 
"201501"), value = c(112189.50293406, 103142.064337463, 81618.762099507, 
73987.36251389)), .Names = c("BankName", "Period", "value"), row.names = c(10L, 
11L, 18L, 19L), class = "data.frame")