张量流变量分配广播
tensorflow variable assign broadcasting
tensorflow中有没有什么方法可以实现对矩阵的广播赋值(tf.Variable)
类似于下面的代码....
a = tf.Variable(np.zeros([10,10,10,10], np.int32))
# creating a mask and trying to assign the 2nd, 3rd dimension of a
mask = tf.ones([10,10])
# 1) which is work in this case, but only assign one block
op = a[0,:,:,0].assign(mask)
# 2) attempting to broadcasting while not work, size mismatch
op = a[0].assign(mask)
对我来说,当前的解决方案可能会迭代所有其他维度,但可能会遇到嵌套循环,如 1)
或者必须有更聪明的方法,谢谢!
不是通用解决方案(大量硬编码张量形状),但希望这能为您的示例提供要点:
a = tf.Variable(np.zeros([10,10,10,10], np.int32))
mask = tf.ones([10,10],dtype=tf.int32)
mask_reshaped = tf.reshape(mask,[1,10,10,1]) # make the number of dims match
mask_broadcast = tf.tile(mask_reshaped, [10, 1, 1, 10]) # do the actual broadcast
op = a.assign(mask_broadcast)
tensorflow中有没有什么方法可以实现对矩阵的广播赋值(tf.Variable) 类似于下面的代码....
a = tf.Variable(np.zeros([10,10,10,10], np.int32))
# creating a mask and trying to assign the 2nd, 3rd dimension of a
mask = tf.ones([10,10])
# 1) which is work in this case, but only assign one block
op = a[0,:,:,0].assign(mask)
# 2) attempting to broadcasting while not work, size mismatch
op = a[0].assign(mask)
对我来说,当前的解决方案可能会迭代所有其他维度,但可能会遇到嵌套循环,如 1) 或者必须有更聪明的方法,谢谢!
不是通用解决方案(大量硬编码张量形状),但希望这能为您的示例提供要点:
a = tf.Variable(np.zeros([10,10,10,10], np.int32))
mask = tf.ones([10,10],dtype=tf.int32)
mask_reshaped = tf.reshape(mask,[1,10,10,1]) # make the number of dims match
mask_broadcast = tf.tile(mask_reshaped, [10, 1, 1, 10]) # do the actual broadcast
op = a.assign(mask_broadcast)