在 python 中调整 ElasticNet 参数 sklearn 包
tuning ElasticNet parameters sklearn package in python
我正在尝试使用 GridSearchCV 从 sklearn 包中实现 ElasticNet。
我的数据都是数字!
我得到一个错误,我不明白是什么问题。
当尝试实现线性回归和套索时,这不是问题。
有人可以帮忙吗?
代码:
from sklearn.linear_model import ElasticNet
from sklearn.model_selection import GridSearchCV
# Use grid search to tune the parameters:
parametersGrid = {"max_iter": [1, 5, 10],
"alpha": [0.0001, 0.001, 0.01, 0.1, 1, 10, 100],
"l1_ratio": np.arange(0.0, 1.0, 0.1)}
eNet = ElasticNet()
grid = GridSearchCV(eNet, parametersGrid, scoring='accuracy', cv=10)
grid.fit(X_train, Y_train)
Y_pred = grid.predict(X_test)
错误:
File "C:\Users\..\Anaconda2\lib\site-packages\sklearn\utils\validation.py", line 58, in _assert_all_finite
" or a value too large for %r." % X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
将用于分类的精度更改为 r2 用于回归:
grid = GridSearchCV(eNet, parametersGrid, scoring='r2', cv=10)
并从数据中删除 nan 等值
indx = ~np.isnan(x).any(axis=1)
X_train = X_train[indx]
Y_train = Y_train[indx]
这是我在代码和错误堆栈中看到的两个直接问题
我正在尝试使用 GridSearchCV 从 sklearn 包中实现 ElasticNet。 我的数据都是数字! 我得到一个错误,我不明白是什么问题。 当尝试实现线性回归和套索时,这不是问题。 有人可以帮忙吗?
代码:
from sklearn.linear_model import ElasticNet
from sklearn.model_selection import GridSearchCV
# Use grid search to tune the parameters:
parametersGrid = {"max_iter": [1, 5, 10],
"alpha": [0.0001, 0.001, 0.01, 0.1, 1, 10, 100],
"l1_ratio": np.arange(0.0, 1.0, 0.1)}
eNet = ElasticNet()
grid = GridSearchCV(eNet, parametersGrid, scoring='accuracy', cv=10)
grid.fit(X_train, Y_train)
Y_pred = grid.predict(X_test)
错误:
File "C:\Users\..\Anaconda2\lib\site-packages\sklearn\utils\validation.py", line 58, in _assert_all_finite
" or a value too large for %r." % X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
将用于分类的精度更改为 r2 用于回归:
grid = GridSearchCV(eNet, parametersGrid, scoring='r2', cv=10)
并从数据中删除 nan 等值
indx = ~np.isnan(x).any(axis=1)
X_train = X_train[indx]
Y_train = Y_train[indx]
这是我在代码和错误堆栈中看到的两个直接问题