分段回归 python
Piecewise regression python
我正在尝试在 Python 中进行分段线性回归,数据如下所示,
我需要为每个部分添加 3 行。知道怎么做吗?我有以下代码,但结果如下所示。任何帮助将不胜感激。
import numpy as np
import matplotlib
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
from scipy import optimize
def piecewise(x,x0,x1,y0,y1,k0,k1,k2):
return np.piecewise(x , [x <= x0, np.logical_and(x0<x, x< x1),x>x1] , [lambda x:k0*x + y0, lambda x:k1*(x-x0)+y1+k0*x0 lambda x:k2*(x-x1) y0+y1+k0*x0+k1*(x1-x0)])
x1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15,16,17,18,19,20,21], dtype=float)
y1 = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03,145,147,149,151,153,155])
y1 = np.flip(y1,0)
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15,16,17,18,19,20,21], dtype=float)
y = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03,145,147,149,151,153,155])
y = np.flip(y,0)
perr_min = np.inf
p_best = None
for n in range(100):
k = np.random.rand(7)*20
p , e = optimize.curve_fit(piecewise, x1, y1,p0=k)
perr = np.sum(np.abs(y1-piecewise(x1, *p)))
if(perr < perr_min):
perr_min = perr
p_best = p
xd = np.linspace(0, 21, 100)
plt.figure()
plt.plot(x1, y1, "o")
y_out = piecewise(xd, *p_best)
plt.plot(xd, y_out)
plt.show()
数据符合
谢谢。
一个很简单的方法(不用迭代,不用初始猜测)就可以解决这个问题。
微积分的方法来自本文第30页:https://fr.scribd.com/document/380941024/Regression-par-morceaux-Piecewise-Regression-pdf(复制在下面)。
下图显示结果:
拟合函数的方程为:
或等价地:
H 是 Heaviside 函数。
另外,数值微积分的细节如下:
我正在尝试在 Python 中进行分段线性回归,数据如下所示,
我需要为每个部分添加 3 行。知道怎么做吗?我有以下代码,但结果如下所示。任何帮助将不胜感激。
import numpy as np
import matplotlib
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
from scipy import optimize
def piecewise(x,x0,x1,y0,y1,k0,k1,k2):
return np.piecewise(x , [x <= x0, np.logical_and(x0<x, x< x1),x>x1] , [lambda x:k0*x + y0, lambda x:k1*(x-x0)+y1+k0*x0 lambda x:k2*(x-x1) y0+y1+k0*x0+k1*(x1-x0)])
x1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15,16,17,18,19,20,21], dtype=float)
y1 = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03,145,147,149,151,153,155])
y1 = np.flip(y1,0)
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15,16,17,18,19,20,21], dtype=float)
y = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03,145,147,149,151,153,155])
y = np.flip(y,0)
perr_min = np.inf
p_best = None
for n in range(100):
k = np.random.rand(7)*20
p , e = optimize.curve_fit(piecewise, x1, y1,p0=k)
perr = np.sum(np.abs(y1-piecewise(x1, *p)))
if(perr < perr_min):
perr_min = perr
p_best = p
xd = np.linspace(0, 21, 100)
plt.figure()
plt.plot(x1, y1, "o")
y_out = piecewise(xd, *p_best)
plt.plot(xd, y_out)
plt.show()
数据符合
谢谢。
一个很简单的方法(不用迭代,不用初始猜测)就可以解决这个问题。
微积分的方法来自本文第30页:https://fr.scribd.com/document/380941024/Regression-par-morceaux-Piecewise-Regression-pdf(复制在下面)。
下图显示结果:
拟合函数的方程为:
或等价地:
H 是 Heaviside 函数。
另外,数值微积分的细节如下: