Kafka Consumer Rebalancing 耗时太长

Kafka Consumer Rebalancing takes too long

我有一个 Kafka Streams 应用程序,它从几个主题中获取数据并将数据加入另一个主题中。

卡夫卡配置:

5 kafka brokers
Kafka Topics - 15 partitions and 3 replication factor. 

注意:我的 运行 Kafka Streams 应用程序与我的 Kafka 代理 运行.

在同一台机器上

每小时有几百万条记录consumed/produced。 每当我关闭任何 kafka 经纪人时,它都会进行重新平衡,大约需要。重新平衡需要 30 分钟,有时甚至更长。

有人知道如何解决 kafka 消费者的再平衡问题吗? 此外,很多时候它在重新平衡时抛出异常。

这会阻止我们使用此设置在生产环境中上线。任何帮助将不胜感激。

Caused by: org.apache.kafka.clients.consumer.CommitFailedException: ?
Commit cannot be completed since the group has already rebalanced and assigned the partitions to another member. This means that the time between subsequent calls to poll() was longer than the configured max.poll.interval.ms, which typically implies that the poll loop is spending too much time message processing. You can address this either by increasing the session timeout or by reducing the maximum size of batches returned in poll() with max.poll.records.
at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator.sendOffsetCommitRequest(ConsumerCoordinator.java:725)

at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator.commitOffsetsSync(ConsumerCoordinator.java:604)
at org.apache.kafka.clients.consumer.KafkaConsumer.commitSync(KafkaConsumer.java:1173)
at org.apache.kafka.streams.processor.internals.StreamTask.commitOffsets(StreamTask.java:307)
at org.apache.kafka.streams.processor.internals.StreamTask.access[=11=]0(StreamTask.java:49)
at org.apache.kafka.streams.processor.internals.StreamTask.run(StreamTask.java:268)
at org.apache.kafka.streams.processor.internals.StreamsMetricsImpl.measureLatencyNs(StreamsMetricsImpl.java:187)
at org.apache.kafka.streams.processor.internals.StreamTask.commitImpl(StreamTask.java:259)
at org.apache.kafka.streams.processor.internals.StreamTask.suspend(StreamTask.java:362)
at org.apache.kafka.streams.processor.internals.StreamTask.suspend(StreamTask.java:346)
at org.apache.kafka.streams.processor.internals.StreamThread.apply(StreamThread.java:1118)
at org.apache.kafka.streams.processor.internals.StreamThread.performOnStreamTasks(StreamThread.java:1448)
at org.apache.kafka.streams.processor.internals.StreamThread.suspendTasksAndState(StreamThread.java:1110)

Kafka 流配置:

bootstrap.servers=kafka-1:9092,kafka-2:9092,kafka-3:9092,kafka-4:9092,kafka-5:9092
max.poll.records = 100
request.timeout.ms=40000

它内部创建的 ConsumerConfig 是:

    auto.commit.interval.ms = 5000
    auto.offset.reset = earliest
    bootstrap.servers = [kafka-1:9092, kafka-2:9092, kafka-3:9092, kafka-4:9092, kafka-5:9092]
    check.crcs = true
    client.id = conversion-live-StreamThread-1-restore-consumer
    connections.max.idle.ms = 540000
    enable.auto.commit = false
    exclude.internal.topics = true
    fetch.max.bytes = 52428800
    fetch.max.wait.ms = 500
    fetch.min.bytes = 1
    group.id = 
    heartbeat.interval.ms = 3000
    interceptor.classes = null
    internal.leave.group.on.close = false
    isolation.level = read_uncommitted
    key.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer
    max.partition.fetch.bytes = 1048576
    max.poll.interval.ms = 2147483647
    max.poll.records = 100
    metadata.max.age.ms = 300000
    metric.reporters = []
    metrics.num.samples = 2
    metrics.recording.level = INFO
    metrics.sample.window.ms = 30000
    partition.assignment.strategy = [class org.apache.kafka.clients.consumer.RangeAssignor]
    receive.buffer.bytes = 65536
    reconnect.backoff.max.ms = 1000
    reconnect.backoff.ms = 50
    request.timeout.ms = 40000
    retry.backoff.ms = 100
    sasl.jaas.config = null
    sasl.kerberos.kinit.cmd = /usr/bin/kinit
    sasl.kerberos.min.time.before.relogin = 60000
    sasl.kerberos.service.name = null
    sasl.kerberos.ticket.renew.jitter = 0.05
    sasl.kerberos.ticket.renew.window.factor = 0.8
    sasl.mechanism = GSSAPI
    security.protocol = PLAINTEXT
    send.buffer.bytes = 131072
    session.timeout.ms = 10000
    ssl.cipher.suites = null
    ssl.enabled.protocols = [TLSv1.2, TLSv1.1, TLSv1]
    ssl.endpoint.identification.algorithm = null
    ssl.key.password = null
    ssl.keymanager.algorithm = SunX509
    ssl.keystore.location = null
    ssl.keystore.password = null
    ssl.keystore.type = JKS
    ssl.protocol = TLS
    ssl.provider = null
    ssl.secure.random.implementation = null
    ssl.trustmanager.algorithm = PKIX
    ssl.truststore.location = null
    ssl.truststore.password = null
    ssl.truststore.type = JKS
    value.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer

我建议通过参数 num.standby.replicas=1 配置 StandbyTasks(默认为 0)。这应该有助于显着减少重新平衡时间。

此外,我建议将您的应用程序升级到 Kafka 0.11。请注意,Streams API 0.11 向后兼容 0.10.1 和 0.10.2 代理,因此,您不需要为此升级您的代理。重新平衡行为在 0.11 中得到了很大改进,并将在即将发布的 1.0 版本中进一步改进(参见 https://cwiki.apache.org/confluence/display/KAFKA/KIP-167%3A+Add+interface+for+the+state+store+restoration+process),因此,将您的应用程序升级到最新版本始终是重新平衡的改进。

根据我的经验, 第一的 考虑到您的工作量,您的 max.poll.records 太小了:每小时只有几百万条记录 consumed/produced。

所以如果 max.poll.records 太小,比如 1,那么重新平衡需要很长时间。我不知道原因。

其次,请确保您的流应用程序输入主题的分区数是一致的。 例如如果 APP-1 有两个输入主题 A 和 B。如果 A 有 4 个分区,B 有 2 个分区,那么重新平衡需要很长时间。但是,如果 A 和 B 都有 4 个分区,并且一些分区处于空闲状态,那么再平衡时间就足够了。 希望对你有帮助