两个数据帧的比较
Comparison of two dataframes
我有一个 excel table 的 15200 行,对应于分析其结构的树。我有列中的所有结构(48 个结构),它们已被计算在每棵树上。例如,树 12607 有 3 个结构 CV11、1 个结构 IN12 和其余所有结构的 none (0)。因此,table 看起来像一个巨大的 table,树上有很多 0 和一些结构的出现次数。最后一列是根据在树上找到的结构赋予树的值(每个结构根据其在树上的存在为树提供一个点数)。
问题是:是否有一些结构或结构的组合赋予树很高的价值。当然,根据每个结构体的值,我们可以看出哪个结构体的值比其他的高(例如:结构体CV11的值为15,结构体IN12的值为4)。但我想知道的是,如果我们采用最终值高于 100 的所有树(我们创建一个新数据框 "data100"),然后与最终值低于 100 的树进行比较(我们创建另一个dataframe "data0"),我们能否发现在这些树上发现的结构的数量和发生率存在显着差异?因为价值高的结构可能只存在于价值低于100的树上;因为例如,此结构不允许在同一棵树上找到其他结构。
瞧,我希望我已经提供了足够的细节......如果你有解决这个问题的任何想法或建议......那就太好了!
下面是我的脚本。
> data100
CV11 CV12 CV13 CV14 CV15 CV21 CV22 CV23 CV24 CV25 CV26 CV31 CV32 CV33 CV41 CV42 CV43 CV44 CV51 CV52 IN11 IN12 IN13
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
13 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IN14 IN21 IN22 IN23 IN31 IN32 IN33 IN34 BA11 BA12 BA21 DE11 DE12 DE13 DE14 DE15 GR11 GR12 GR13 GR21 GR22 GR31 GR32
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EP11 EP12 EP13 EP14 EP21 EP31 EP32 EP33 EP34 EP35 NE11 NE12 NE21 OT11 OT12 OT21 OT22 ecoval
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20
[ reached getOption("max.print") -- omitted 60749 rows ]
> sortdata100<-data100[order(data100[,64],decreasing=T),]
> rsortdata100<-sortdata100[sortdata100$ecoval>100,]
> rsortdata100<-na.omit(rsortdata100)#181 lignes
> rsortdata100
CV11 CV12 CV13 CV14 CV15 CV21 CV22 CV23 CV24 CV25 CV26 CV31 CV32 CV33 CV41 CV42 CV43 CV44 CV51 CV52 IN11 IN12 IN13
1291 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1083 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3919 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
14685 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
4021 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
5452 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14686 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
4022 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
1013 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2895 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4719 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
682 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3444 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1299 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
2713 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
IN14 IN21 IN22 IN23 IN31 IN32 IN33 IN34 BA11 BA12 BA21 DE11 DE12 DE13 DE14 DE15 GR11 GR12 GR13 GR21 GR22 GR31 GR32
1291 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1083 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3919 0 0 1 0 2 0 0 0 2 0 0 0 3 0 0 0 0 0 0 11 0 0 0
14685 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4021 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5452 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
14686 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 2
4022 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1013 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2895 0 0 0 1 0 0 0 0 4 0 0 3 0 4 3 0 0 0 0 0 0 0 0
4719 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
682 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0
3444 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
2713 0 0 0 2 0 3 0 0 2 0 0 0 1 5 1 0 0 0 0 0 0 0 0
EP11 EP12 EP13 EP14 EP21 EP31 EP32 EP33 EP34 EP35 NE11 NE12 NE21 OT11 OT12 OT21 OT22 ecoval
1291 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1192
1083 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 424
3919 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 380
14685 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370
4021 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 358
5452 0 0 0 0 0 0 1 0 0 11 0 0 0 0 1 0 0 356
14686 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 354
4022 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 346
1013 0 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 326
2895 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 325
4719 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 324
682 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 311
3444 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 306
1299 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 302
2713 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 302
[ reached getOption("max.print") -- omitted 166 rows ]
> data0<-sortdata100[sortdata100$ecoval<100,]
> data0<-na.omit(data0)
> data0
CV11 CV12 CV13 CV14 CV15 CV21 CV22 CV23 CV24 CV25 CV26 CV31 CV32 CV33 CV41 CV42 CV43 CV44 CV51 CV52 IN11 IN12 IN13
4728 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
5339 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
11766 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
796 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3561 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
10581 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
10618 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0
14376 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
14389 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
790 0 0 0 1 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 1 0 0
3974 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
4739 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0
156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2740 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2950 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
IN14 IN21 IN22 IN23 IN31 IN32 IN33 IN34 BA11 BA12 BA21 DE11 DE12 DE13 DE14 DE15 GR11 GR12 GR13 GR21 GR22 GR31 GR32
4728 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
5339 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
11766 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
796 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3561 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10581 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
10618 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
14376 1 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0
14389 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0
790 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
3974 0 0 0 0 0 0 0 0 1 0 0 0 4 0 0 0 1 0 0 0 0 0 0
4739 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
156 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
2740 0 0 0 0 0 0 0 0 0 0 0 0 0 6 2 0 0 0 0 0 0 0 0
2950 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EP11 EP12 EP13 EP14 EP21 EP31 EP32 EP33 EP34 EP35 NE11 NE12 NE21 OT11 OT12 OT21 OT22 ecoval
4728 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 99
5339 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 99
11766 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 99
796 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98
3561 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98
10581 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 98
10618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 98
14376 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98
14389 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98
790 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97
3974 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97
4739 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 97
156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96
2740 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 96
2950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96
[ reached getOption("max.print") -- omitted 14984 rows ]
也许是这样的?
library(dplyr)
data %>% group_by(ecoval > 100) %>% summarize_all(mean)
这应该会为您提供 ecoval >
和 <=
到 100
每列的平均值
我有一个 excel table 的 15200 行,对应于分析其结构的树。我有列中的所有结构(48 个结构),它们已被计算在每棵树上。例如,树 12607 有 3 个结构 CV11、1 个结构 IN12 和其余所有结构的 none (0)。因此,table 看起来像一个巨大的 table,树上有很多 0 和一些结构的出现次数。最后一列是根据在树上找到的结构赋予树的值(每个结构根据其在树上的存在为树提供一个点数)。
问题是:是否有一些结构或结构的组合赋予树很高的价值。当然,根据每个结构体的值,我们可以看出哪个结构体的值比其他的高(例如:结构体CV11的值为15,结构体IN12的值为4)。但我想知道的是,如果我们采用最终值高于 100 的所有树(我们创建一个新数据框 "data100"),然后与最终值低于 100 的树进行比较(我们创建另一个dataframe "data0"),我们能否发现在这些树上发现的结构的数量和发生率存在显着差异?因为价值高的结构可能只存在于价值低于100的树上;因为例如,此结构不允许在同一棵树上找到其他结构。
瞧,我希望我已经提供了足够的细节......如果你有解决这个问题的任何想法或建议......那就太好了!
下面是我的脚本。
> data100
CV11 CV12 CV13 CV14 CV15 CV21 CV22 CV23 CV24 CV25 CV26 CV31 CV32 CV33 CV41 CV42 CV43 CV44 CV51 CV52 IN11 IN12 IN13
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
13 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IN14 IN21 IN22 IN23 IN31 IN32 IN33 IN34 BA11 BA12 BA21 DE11 DE12 DE13 DE14 DE15 GR11 GR12 GR13 GR21 GR22 GR31 GR32
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EP11 EP12 EP13 EP14 EP21 EP31 EP32 EP33 EP34 EP35 NE11 NE12 NE21 OT11 OT12 OT21 OT22 ecoval
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20
[ reached getOption("max.print") -- omitted 60749 rows ]
> sortdata100<-data100[order(data100[,64],decreasing=T),]
> rsortdata100<-sortdata100[sortdata100$ecoval>100,]
> rsortdata100<-na.omit(rsortdata100)#181 lignes
> rsortdata100
CV11 CV12 CV13 CV14 CV15 CV21 CV22 CV23 CV24 CV25 CV26 CV31 CV32 CV33 CV41 CV42 CV43 CV44 CV51 CV52 IN11 IN12 IN13
1291 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1083 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3919 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
14685 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
4021 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
5452 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14686 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
4022 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
1013 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2895 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4719 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
682 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3444 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1299 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
2713 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
IN14 IN21 IN22 IN23 IN31 IN32 IN33 IN34 BA11 BA12 BA21 DE11 DE12 DE13 DE14 DE15 GR11 GR12 GR13 GR21 GR22 GR31 GR32
1291 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1083 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3919 0 0 1 0 2 0 0 0 2 0 0 0 3 0 0 0 0 0 0 11 0 0 0
14685 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4021 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5452 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
14686 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 2
4022 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1013 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2895 0 0 0 1 0 0 0 0 4 0 0 3 0 4 3 0 0 0 0 0 0 0 0
4719 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
682 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0
3444 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
2713 0 0 0 2 0 3 0 0 2 0 0 0 1 5 1 0 0 0 0 0 0 0 0
EP11 EP12 EP13 EP14 EP21 EP31 EP32 EP33 EP34 EP35 NE11 NE12 NE21 OT11 OT12 OT21 OT22 ecoval
1291 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1192
1083 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 424
3919 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 380
14685 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370
4021 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 358
5452 0 0 0 0 0 0 1 0 0 11 0 0 0 0 1 0 0 356
14686 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 354
4022 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 346
1013 0 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 326
2895 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 325
4719 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 324
682 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 311
3444 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 306
1299 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 302
2713 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 302
[ reached getOption("max.print") -- omitted 166 rows ]
> data0<-sortdata100[sortdata100$ecoval<100,]
> data0<-na.omit(data0)
> data0
CV11 CV12 CV13 CV14 CV15 CV21 CV22 CV23 CV24 CV25 CV26 CV31 CV32 CV33 CV41 CV42 CV43 CV44 CV51 CV52 IN11 IN12 IN13
4728 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
5339 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
11766 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
796 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3561 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
10581 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
10618 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0
14376 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
14389 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
790 0 0 0 1 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 1 0 0
3974 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
4739 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0
156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2740 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2950 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
IN14 IN21 IN22 IN23 IN31 IN32 IN33 IN34 BA11 BA12 BA21 DE11 DE12 DE13 DE14 DE15 GR11 GR12 GR13 GR21 GR22 GR31 GR32
4728 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
5339 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
11766 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
796 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3561 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10581 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
10618 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
14376 1 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0
14389 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0
790 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
3974 0 0 0 0 0 0 0 0 1 0 0 0 4 0 0 0 1 0 0 0 0 0 0
4739 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
156 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
2740 0 0 0 0 0 0 0 0 0 0 0 0 0 6 2 0 0 0 0 0 0 0 0
2950 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EP11 EP12 EP13 EP14 EP21 EP31 EP32 EP33 EP34 EP35 NE11 NE12 NE21 OT11 OT12 OT21 OT22 ecoval
4728 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 99
5339 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 99
11766 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 99
796 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98
3561 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98
10581 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 98
10618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 98
14376 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98
14389 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98
790 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97
3974 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97
4739 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 97
156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96
2740 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 96
2950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96
[ reached getOption("max.print") -- omitted 14984 rows ]
也许是这样的?
library(dplyr)
data %>% group_by(ecoval > 100) %>% summarize_all(mean)
这应该会为您提供 ecoval >
和 <=
到 100